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ARTICLE INFO ABSTRACT

Communicated by Qiulin Qu Utilizing an upstream tangential injection and downstream streamwise suction, co-flow wall jet (CFWJ) is
demonstrated to be an effective and efficient zero-net-mass-flux active flow control method. However, the
underlying separation control mechanism is not fully understood. This paper conducts a theoretical analysis
using two-dimensional (2D) differential and integral wall jet momentum equations, which are supported by
quantitative solutions of 2D unsteady Reynolds averaged Navier-Stokes equations for the NASA hump flows.
This study reveals the CFWJ working mechanism with three factors: 1) A CFWJ establishes the required large
clockwise spanwise vorticity and transverse gradient of vorticity magnitude near the wall by tangential injection
and streamwise suction. This is essential to offset the adverse pressure gradient (APG) by enhancing the turbulent
diffusion and the wall vorticity flux. 2) The wall jet provides the required streamwise mass flux to enhance the
streamwise inertia force that offsets the APG. 3) The turbulent diffusion is enhanced by the severe APG, which
in turn counteracts the effect of APG. The validated numerical simulation demonstrates that turbulent diffusion
plays a dominant role in offsetting APG. It is observed that immersing the entire CFWJ in the APG region is most
effective and efficient for flow separation control.
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Since the co-flow wall jet belongs to the wall jet family, it is worth-
while to briefly review the wall jet study for providing the overall back-
ground. Launder and Rodi [12] define a wall jet as a “boundary layer
in which, by virtue of the initially supplied momentum, the velocity
over some region in the shear layer exceeds that in the free stream”.
Apart from the co-flow wall jet, wall jets are widely used for the circula-

1. Introduction

Active Flow Control (AFC) has the potential to break through con-
ventional fluid mechanics limitations and provides significant perfor-
mance improvement to fluid systems [1]. AFC is to transfer external
energy to the controlled flows in order to improve the performance of

the flow systems. Since flow separation was first addressed by Prandtl
[2], separation control has been an important application area of AFC.
Synthetic jets [3,4] generated by periodic motion of a piston or di-
aphragm and plasma jets [5,6] based on plasma discharge are zero-net-
mass-flux (ZNMF) flow controls, which require no external flow source.
However, the actuators of these methods have low energy conversion
efficiency of less than 10% [7]. Co-flow Wall Jet (CFWJ) is a recently de-
veloped ZNMF active flow control method, which has high effectiveness
in lift enhancement [8,9], flow distortion control [10], separation re-
moval [7], etc, and high energy conversion efficiency [11]. As sketched
in Fig. 1, CFWJ has a streamwise suction drawing a small amount of
mass flow in the downstream, pressurizes and energizes the mass flow
using a micro-compressor actuator system embedded inside, and then
tangentially injects the same amount of mass flow in the upstream.

* Corresponding author.
E-mail address: kewei.xu@maine.edu (K. Xu).

https://doi.org/10.1016/j.ast.2025.110775

tion control airfoil [13-15] and aircraft upper surface blowing [16-19].
There is a rich literature on wall jet studies pioneered by Forthmann
with his first paper on wall jet in 1936 [20]. There are multiple wall
jet studies after, including the important contributions of Glauert [21],
Launder and Rodi [12], Bradshaw and Gee [22], Newman et al. [23],
Wygnanski et al. [24], Dairay et al. [25], Guo et al. [26] and Gupta et al.
[27]. Most of these studies are focused on understanding the fundamen-
tal physics behaviors of the wall jets, either with or without external
streams, such as the velocity scaling law, skin friction, eddy viscosity
and shear stress distribution, shear layer growth rate, forced excitation,
transition, jet impingement, etc. A few studies address the wall jet mech-
anism for separation control, even though it is well recognized that the
wall jet is effective in suppressing flow separation due to energizing the
boundary layer.
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Fig. 1. Sketches of the baseline NASA hump (Top) and CFWJ hump (bottom).

Although “energizing the boundary layer” seems to be a general un-
derstanding as the course that makes the flow attached, there is no clear
knowledge of what factor plays the key role in “energizing the bound-
ary layer” to overcome the adverse pressure gradient. Therefore, it is
important to break down the terms in the wall jet question to examine
each term and its role. The purpose of this paper is to study CFWJ.

In CFWJ, the ejected turbulent wall jet will destabilize the main flow
and trigger the main flow to become turbulent. The streamwise suction
has a non-90° angle with the local wall surface that increases not only
the transverse momentum of the flow but also the streamwise momen-
tum. Our prior work [7] studied the CFWJ’s energy efficiency. It indi-
cates that it is most effective and efficient to place the injection slightly
downstream of the separation onset location and immerse the entire
CFWJ in adverse pressure gradient region. Following the study of the en-
ergy expenditure of CFWJ [7], it is important to ask a further question:
why is CFWJ able to overcome the adverse pressure gradient and make
the flow attached? This is also motivated by many other previous works
where CFWJ airfoil can sustain an extreme adverse pressure gradient
(EAPG) [28] at 65° of angle of attack (AoA) and achieve a Cy . ex-
ceeding the theoretical limit of potential flow [29], C} ... =27(1+1/c)
in both experiments and numerical simulations [30,31]. Apart from our
work, the effectiveness of CFJ is also reported by other research groups
[32-35].

To answer the above question, the wall jet momentum equation is
studied in this paper. The effects of injection and suction on flow at-
tachment are evaluated using the 2D URANS simulation. Although the
turbulent wall jet momentum equation is well known, the research to
analyze and understand the separation control mechanism for CFWJ is
the first time. The outcomes of the present study not only apply to the
CFWJ but are extendable to the general wall jet AFC. The present paper
is an extension of the CFWJ energy-expenditure study [7] and is refined
based on the previous conference publication [36].

2. Separation control analysis based on turbulent wall jet
momentum equations

The proposed analysis framework for separation control based on
the two forms of the turbulent wall jet momentum equation is briefly
discussed below.

2.1. Differential form

Assuming negligible body forces, the normalized two-dimensional
incompressible turbulent wall jet momentum equation in the x-direction
can be approximated as follows. Here, x denotes the direction tangential
to the wall surface (pointing downstream), and y is the direction normal
to the wall (pointing outward). The velocity components in the x and
y directions are denoted by u and v, respectively. The dynamic viscos-
ity (u) includes molecular viscosity (4,,) and turbulent viscosity (y,).
Note that the dimensional terms are normalized following & = u/u,,
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X=X/Lo, 7=/Loo, i = i/ Hoo» P=DP/(pooti>) and p = p/p,, and that
after normalization over-lines are omitted for simplicity.

ou 1 0uodu  Op _ p du
Re 0y dy dx_Reay2

The first two terms on the left-hand side (LHS) of Eq. (1) are the
convective terms, which are responsible for transporting the wall jet
momentum in streamwise and transverse (normal wall) directions. The
third term represents the turbulence diffusion due to the turbulent eddy
viscosity gradient. This term is negligible for laminar flow since the vis-
cosity coefficient is fairly constant, but is shown to be dominant in the
present study for turbulent wall jet mixing due to the rapidly growing
rate of turbulent eddy viscosity near the wall.

On the right-hand side (RHS) of Eq. (1), the term 0%u/dy” is an
indicator of the flow status away from the wall. A negative value indi-
cates a convex velocity profile as an attached flow, and a positive value
indicates a concave velocity profile, meaning flow separation. More dis-
cussions regarding how the sign of 9%u/dy? is related with flow status
can be referred to Ref. [1,36,37]. In adverse pressure gradient, the term
dp/ox is positive.

The current mechanism analysis is to see how the first three terms
(representing different effects of flow control) are enhanced by CFWJ
to offset the positive dp/dx and drive the RHS 9%u/dy* to negative for
flow attachment. To do this, the first three terms are quantified through
a validated 2D URANS simulation, which provides direct insights into
their respective contribution to the flow attachment.

For the tangential injection of co-flow wall jet, Eq. (1) can be also
expressed in terms of spanwise vorticity as:

(€8]

Jv  Ju ou
w,=———x—— 2
£ ox oy dy 2
This is because the jet ejected tangentially to the wall has dv/dx <<
ou/dy. The wall jet momentum Eq. (1) downstream of the injection slot
may be rewritten as:
du @, 0p  Op u 0w,
— —pUw,+ ——+ — X —— 3
PO TP T Re dy Ox Re 0y 3
The second term in Eq. (3) represents the vorticity flux. The vor-
ticity form of the equation will facilitate the understanding of vorticity
convection effect in later discussion.

2.2. Integral form

The lump effect can be obtained by integrating the momentum equa-
tion across the wall jet velocity profile. The integral form of the non-
dimensional wall jet momentum equation derived by Coles [38] is given
below:

2df «dp _ T
Where u, is boundary layer edge velocity, 6* is the displacement thick-
ness, 0 is the momentum thickness, and 7, is the wall shear stress. If
7,, > 0, the flow is attached. If 7,, <0, the flow is separated.
Eq. (4) can be further rewritten as:

s 407w
(20 +6")(S dx)_Re (5)

Where S =Qd6/dx and Q = puﬁ /(20 +5*). Q represents the convection
terms expressed by the dynamic pressure augmented by the wall jet
momentum and displacement thickness in the denominator.

In APG, terms 6* and 0 are usually positive. If S > dp/dx, then 7, >
0, the flow is attached. If S < dp/dx, then 7, <0, the flow is separated.
This provides a quantitative criterion to evaluate flow separation.

Eq. (5) can be used to analyze the separation control mechanism
in the same way as the differential equation (1). The enhancement of
both the spanwise vorticity @, magnitude and streamwise mass flow will
increase Q factor and S factor by reducing 6 and 6*. For a wall jet in
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an adverse pressure gradient, d6/dx is always positive due to boundary
layer momentum loss. Therefore, the S factor is always positive to offset
APG, dp/dx in Eq. (5). The quantification in later Sections is to see how
CFWJ can enhance the S factor to achieve 7, > 0.

3. Numerical approaches

With the analysis framework established in Section 2, the following
sections aim to analyze the CFWJ separation control mechanism based
on the framework and support the analysis by quantitative results. This
section addresses the setups of the current numerical study, including
numerical methods, model geometry, meshes, boundary conditions, and
validations.

3.1. Governing equations

The governing equations for the CFD simulation are the unsteady
Reynolds averaged Navier-Stokes equations (URANS) with one equation
Spalart-Allmaras turbulence model [39], which are solved in a fully cou-
pled manner using an implicit unfactored Gauss-Seidel line iteration to
achieve high convergence rate. The normalized Navier-Stokes govern-
ing equations in generalized coordinates are given by:

0Q OE OF 0G 1[@1{ S oT

or o T on T o T e |og T E]”V ©

where Re is the Reynolds number. As described for the normalization
of Eq. (1), the Reynolds number in Eq. (6) is not intended to be the
scaling Reynolds number for the co-flow wall jet. The Reynolds number
in this study is determined by the NASA hump chord length and the
inlet flow conditions, which is the same as that used in the experimental
study of Seifert and Pack [40]. Their research indicates that the flow
control effectiveness is not sensitive to the way of the Reynolds number
determined, i.e., by the chord length, slot height, or upstream boundary
layer momentum thickness. The conservative variable vector Q, inviscid
flux E, viscous flux vector R are expressed as follows, and the rest can
be expressed following the symmetric rule.

p pU
pu pulU + p&,
Q=l pv ’E=l poU + pé, )
J | pw J | pwU + pé,
pe (pe + p)U
| PV poU
_ 0 0
Tyi&i 0
1 7y |0
R= T 7i&; 8, = 0
(ujz;; = qizfi 0
Lv+9) g S
L o ox; ~! v

The S, in Eq. (6) is the source term for the S-A model,
N2
1 1 v
S,=7 [E [—P (Cwlfw - %fﬂ) (;) ]

+L [gc,,z(va)z— %(v+\7)V\7-Vp] @

+Re [pf1 (Aq’] + pey (1= fr2) S7)
Other auxiliary relations and coefficients for the S-A turbulence
model can be found in [39,41].

3.2. Navier-Stokes equations solver

The in-house high order CFD code Flow-Acoustics-Structure Interac-
tion Package (FASIP) is used to solve the 2D unsteady-Reynolds aver-
aged Navier-Stokes equations with one equation Spalart-Allmaras (S-A)
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Fig. 2. Geometry of the hump upper surface [50].
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Fig. 3. 2D computational mesh of baseline hump with zoomed view on the
surface mesh.

Table 1
Details of the mesh sizes.

Meshes Hump Injection duct  Suction plenum

408x108
816x216

40x80
80x160

62x112
124x224

Baseline
Refined

turbulence model [39]. A 3rd order WENO scheme for the inviscid flux
[42,43] and a 4th order central differencing for the viscous terms [43]
are employed to discretize the Navier-Stokes equations. The low diffu-
sion E-CUSP scheme suggested by Zha et al. [44] based on the Zha-Bilgen
flux vector splitting [42] is utilized with the WENO scheme to evalu-
ate the inviscid fluxes. All the simulations in this study are conducted
as unsteady time accurate simulations. The second order time-accurate
implicit time marching method with pseudo time and Gauss-Seidel line
relaxation is used to achieve a fast convergence rate [45,46]. The FASIP
code is intensively validated for CFWJ simulations [8,30,47-49]. The
time-averaged results are presented after the flows and all the aerody-
namic forces become dynamically stable.

3.3. Mesh and boundary conditions

The baseline NASA hump configuration with no flow control is de-
signed to have a converging section followed by a rapid area expansion
downstream of the throat as shown in Fig. 2, which creates a severe
diffusion and massive flow separation.

As shown in Fig. 3, the computational domain with a mesh of
408%108 = 44,064 cells is created based on the experimental setups
described in references [50,51]. Details of mesh sizes are shown in Ta-
ble 1.

The boundary conditions (BCs) set-up is illustrated in Fig. 4. The inlet
is located at 6C upstream of the hump and the outlet is at 3C downstream
of the hump. The total pressure, total temperature, and flow angle are
specified at the inlet as the boundary conditions. Static pressure is spec-
ified at the outlet boundary. The top wall is 0.9 C away from the bottom
as designed in the experiments [50,51]. No-slip wall BC is enforced on
all the walls. Note that the original NASA case modified the top surface
with a slight downward step, and with the slip wall boundary condition,
the blockage effect can be reproduced. Different from such a treatment,
we applied the no-slip wall boundary condition on the unmodified top
surface to directly model the blockage effect.
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Fig. 4. Boundary conditions of baseline hump simulation and the reference con-
ditions.

10°
Attached flow
) Separated flow
107 ———— Refined mesh
10*F

Residual
S
T

| 1 T -
0 100 200 300
Time steps

Fig. 5. Convergence history of typical cases.

The unsteady simulation uses a constant non-dimensional charac-
teristic time step A7 = 5x107> with the maximum L,-norm residual
typically reduced by 2 orders of magnitude within less than 40 pseudo
time iterations per physical time step. Fig. 5 shows three typical con-
vergence histories with time for three unsteady simulations, including a
separated baseline flow and its associated mesh refinement result, and
an attached flow with flow control. The L2-Norm residual of the un-
steady Navier-Stokes equations is basically driven to machine zero with
400 characteristic time, indicating the full convergence of the unsteady
Navier-Stokes equations. All the cases in the present numerical study
achieve a similar convergence, which ensures the reliability of the re-
sults.

3.4. Validations of numerical simulation

The experimental baseline hump, steady injection, and suction cases
[51,52] are used to validate the simulation. All the location positions
are measured from the hump leading-edge referring to Fig. 4.

3.4.1. Validation of baseline NASA hump

The NASA hump is widely used as a benchmark case to validate nu-
merical algorithms and turbulence modeling [52]. Previous studies have
tested various turbulence models, demonstrating that the S-A model pro-
duced no significant differences compared to other models such as SST
and SSG/LRR-RSM in terms of pressure coefficient distribution, skin fric-
tion coefficient (particularly in the region 0 < x/C < 1), separation
onset, and reattachment location [52]. Furthermore, this paper aims to
study the mechanism of how CFWJ attaches flow in the adverse pres-
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Fig. 6. Normalized x-directional velocity (u/U,,) contours of the baseline hump
with the separation onset location and velocity profile.

sure gradient. The S-A model is widely recognized to represent turbulent
characteristics well for attached turbulent boundary layers. Therefore,
the S-A model is suitable for the purpose of this study.

To validate the FASIP code, the current CFD simulations use the same
experimental Mach number and Reynolds number. In experiments, the
hump model was tested in an open-return wind tunnel with freestream
velocity of U, = 34 m/s (Mach = 0.1). The Reynolds number for all
the cases is 0.93x10° based on the hump chord length. Mesh refinement
studies are also conducted by doubling the number of grid points in i, j
direction simultaneously. The sizes of the baseline and refined meshes
are given in Table 1.

Fig. 6 shows the normalized x-directional velocity (z/U,,) contours
of the baseline hump with the zoomed view of the velocity profile at
the separation onset location. Fig. 7 compares the skin friction coeffi-
cient C; and the pressure coefficient C, with experimental data. The
numerically-computed C in Fig. 7 (a) indicates that the flow separa-
tion onset occurs at x/C = 0.663 (zr,, = 0) and reattaches at x/C =
1.17, which agree well with the experimental measurement with separa-
tion inception point at 0.665 and reattachment at 1.11 + 0.003 [50,53].
Downstream of the reattachment point beyond x/C = 1 in Fig. 7 (a),
the deviation between the numerical and experimental C is due to the
inadequacy of the S-A turbulence model to resolve the severe flow sepa-
ration. A similar discrepancy is reported by Rumsey [52] and Naughton
et al. [54].

Fig. 7 (b) is the numerically-computed C, distributions (in black) of
the baseline hump compared with the experiment [50,51]. Following
the practice by Rumsey [52] and Kara et al. [55], the numerically-
computed time-averaged C, distributions are shifted by -0.033 to match
the experimental upstream reference conditions. As shown in Fig. 7 (b),
the simulated C, distributions of the baseline hump agree very well with
experimental measurement, except that the pressure drop at 0.6 < x/C
< 0.9 is slightly underestimated. A similar discrepancy is also reported
by other researchers [52,55].

3.4.2. Validation of the hump with injection

To further validate the numerical simulation of jet injection, the
hump case with steady injection only is simulated and compared with
the experiment. The blowing actuator is located at x/C = 0.68 and is
angled at 10° to the bottom wall as described in Ref. [51]. Fig. 8 (a)
is the velocity contours of steady injection only case with U; =85 m/s
(CM =0.9%) used in the experiment [51]. The boundary conditions and
case set-up are the same as those used by Borgmann et al. [51] and Tang
et al. [56]. The steady-blowing jet fully attaches the flow. The C, dis-
tributions in Fig. 8 (b) shows that the numerically-computed pressure
distribution is again in very good agreement with the experiment [51].
The spike downstream of the low-pressure suction peak is due to the jet
injection. The solution is converged based on the mesh refinement as
shown in Fig. 8 (b).
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Fig. 7. Comparison of the C; and C, distribution with experimental data. dp/dx is the plot of streamwise pressure gradient.
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Fig. 8. CFD results of the hump with steady blowing.

3.4.3. Validation of the hump with suction

The last validation case is the one using steady suction only with C,
of 0.241% (mass flow coefficient Co= 0.15% [571). For the suction-
only case, the hump geometry is the same as the baseline case with a
suction plenum located at x/C = 0.65 and the mesh is directly adopted
from the NASA source [52]. The computed velocity contour in Fig. 9
indicates that the suction-only flow control at the current C, is not
adequate to remove the flow separation, which is consistent with the
experimental observation. The numerically-computed C, distributions
with mesh refinement are shown in Fig. 9. The CFD results are in good
agreement with the experiment [52], but with the pressure rise under-
predicted at 0.6 < x/C < 1.2, which indicates that the separation bubble
thickness may be over-predicted. A similar discrepancy is observed in
the URANS simulations conducted by other researchers [58,59]. Further
increase of the mesh size does not change the results as shown by the
mesh refinement in Fig. 9 (b).

4. Separation control mechanism of CFWJ

In the CFWJ simulation as shown in Fig. 10, the micro-compressor
actuator is simulated by applying total pressure inlet BC at the injec-
tion slot and static pressure outlet BC at the suction slot. An iteration
is conducted to match the suction mass flow rate to the injection one
within a tolerance of 1%. This treatment of the injection and suction is
thoroughly validated in the previous work [8,9,30,60-62].

In our prior work [7], we examined a total of 13 cases to investigate
the individual effects of CFWJ injection and suction. These cases are
categorized by applying the injection in different pressure gradients. The

injection is applied in the adverse pressure gradient region for Cases 1-
7 and in the favorable pressure gradient region for Cases 8-13. Here,
we present the most efficient configuration from each category. All the
flows are attached with minimum energy consumption. The two cases
are CFWJ Case 2 and Case 9, as shown in Fig. 11. Specifically, Case 2 has
the injection at 67.5%C, and Case 9 has the suction at 70%C. These two
cases represent the CFWJ with injection dominant and suction dominant
cases respectively by placing the injection or suction close to the baseline
separation onset point at 66.3%, but both are slightly downstream of
the separation onset point in the region of adverse pressure gradient
[7]. The momentum coefficient C,is defined in Eq. (8), where r is
the CFWJ mass flow rate, U; is the injection velocity, and A,,; is the
reference area (hump platform area). The C,, used is 0.85% for Case 2
and 0.77% for Case 9, which are the minimum C, to achieve full flow
attachment for these two cases respectively [7].

rilUj
S Py ®
Epreroo Aref

The CFWJ power required is defined by the total enthalpy rise
from the suction duct outlet (compressor inlet) to the injection duct in-
let (compressor outlet) [63]. The expression for power required (PR)
and the non-dimensional power coefficient (P,) are defined as follows,
where, H,, is the total enthalpy at the suction slot, I is the total pressure
ratio between the injection and suction, and y is the specific heat ratio
with a value of 1.4 for ideal gas. The minimum P, required for Case 2 to
achieve full flow attachment is 0.003, which is lower than that of Case
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Fig. 9. CFD results of the hump with steady suction.
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Fig. 10. Numerical treatment of the CFWJ hump. Injection and suction ducts are
colored by red and blue, respectively. Micro-compressor is numerically treated
by boundary conditions. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

9 of 0.0032. Increasing C,, in Case 9 to the same value as Case 2 will
further increase P,, leading to an excessive energy consumption.

y—1

PR=mH,T 7 —1) )
EprEfUrefAref

4.1. Injection placed near separation onset point

Fig. 12 shows the spanwise vorticity contours and velocity profiles
at five streamwise stations along the co-flow wall jet for CFWJ Case 2,
which has the entire CFWJ immersed in adverse pressure gradient re-
gion. The velocity profile at Station 1 upstream of the injection slot is
a typical wall boundary layer profile, which is energized by the down-
stream CFWJ and would be nearly separated otherwise. The velocity
profile at Station 2 downstream of the injection slot has a protrud-
ing profile close to the wall, a typical wall jet profile. In the adverse
pressure gradient, the wall jet profile becomes more smeared flowing
downstream due to mixing with the mainstream as shown at Stations 3
and 4. Further beyond the suction slot, the velocity profile returns to a
typical boundary layer profile but is energized as shown in Station 5.

There are three counter-rotating layers of vorticity observed clearly
downstream of the injection slot in Fig. 12, a layer of clockwise vorticity
due to the wall jet boundary layer in blue, a layer of counter-clockwise
vorticity due to the wall jet in red, a zero vorticity layer between the
two counter-rotating vorticity layers in white, and a layer of clockwise
vorticity due to the main flow boundary layer mixing with the wall
jet in blue. With the CFWJ flowing downstream, the wall jet counter-
clockwise vorticity layer is decayed and dissipated due to mixing and
disappears downstream of the suction slot when the CFWJ ends.

The pressure coefficient distribution along the wall in Fig. 13 in-
dicates that CFWJ Cases 2 and 9 have the peak velocity much more
augmented compared with the baseline due to the removal of flow sep-
aration. The pressure spikes at the x/C, about 0.5 and 0.9 are caused

by the injection and suction slots due to slot opening and sharp lip ac-
celeration. More details are discussed in Ref. [7].

The boundary layer profiles of CFWJ Case 2 with the injection at
67.5%C are analyzed based on the wall jet differential Eq. (1) and (3)
and integral Eq. (5) to investigate the injection effects. Fig. 14 (a) shows
the transverse distributions of the terms in Eq. (3) normal to the wall
surface at the location 2%C downstream of the injection slot. The extrac-
tion location is chosen to be close enough to the injection (or suction)
slot to best capture the jet effects, while also avoiding regions near the
slot-hump transition surfaces, which could otherwise introduce artifi-
cial errors. The distances of 2%C downstream of the injection slot and
1.5%C upstream of the suction slot (in Section 4.2) are also determined
in a trade study that are effective at the closest position to the slots.
The profiles are plotted in Fig. 14 against the normal distance from the
wall normalized by the injection slot height (D/h). For better demon-
stration, R is the summation of the first three terms of Eq. (1), which
is the resultant factor to offset the adverse pressure gradient. LH S, is
the summation of all the terms on the left-hand side of Eq. (1).

The flow is attached by CFWJ at this location as shown in Fig. 14,
but has [0%u/0y*]p/p=o > 0 (LHSp >0, Eq. (1)) at the wall. This is
because the summation of the first three terms, R in Eq. (1), is basically
zero at the wall due to the no-slip zero velocity with constant molecular
viscosity. Eq. (1) returns to the compatibility condition [64, p. 133] at
the wall as expressed by Eq. (11). The [0%u/dy*]p /=0 Solely depends
on the local pressure gradient with positive sign in APG no matter the
flow is separated or attached. A flow in APG can be very well attached
with [0%u/0y?] D/h=0 > 0 as shown here.
ap o
ox

P
y=0 0y’

z

1)

N —HU
y=0 ay y=0

The compatibility condition Eq. (11) indicates that an increasing
spanwise clockwise vorticity distribution normal to the wall is a neces-
sary condition to attach flow in adverse pressure gradient. The greater
the adverse pressure gradient, the higher the gradient of vorticity mag-
nitude needs to be. A strong wall jet injection with the protruding profile
provides a high dw, /0y at the wall to satisfy the compatibility condition.
Such a vorticity gradient is provided by a wall-jet-enhanced turbulent
boundary layer due to the rapid velocity increasing rate beyond the thin
linear viscous sub-layer, as shown by Fig. 14 (b). The stream-wise suc-
tion also has the similar effect.

Away from the wall as shown in Fig. 14 (a), the adverse pressure
gradient is offset by the rapidly increasing magnitude of R with a nega-
tive sign. Among the first three terms in Eq. (3), the turbulent diffusion
®,04/0y/ Re makes the largest contribution to offset the adverse pres-
sure gradient. This is attributed to the large gradient of the eddy viscos-
ity (0p,/0y) and large spanwise vorticity (w,) of the wall jet as shown
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Fig. 11. Configurations of the CFWJ NASA hump. The dominant location means near separation onset.

Table 2
CFWJ Case 2, terms in Eq. (3) at y* =2 at 2%C downstream of the injection slot.
Cases Location  C, puou/ox  —pvw,  w,0u/dy/Re  Op/ox LHS),
CFWJ 2 69.5%C 0.85% -5.15 1.77 -18.54 10.33 -11.59
Table 3
CFWJ Case 2, terms in Eq. (5) at 2%C downstream of the injection slot.
Cases Location  C, &* [ do/dx  Q S dp/dx  LHS,
CFWJ 2 69.5%C 0.85% 5.70x1073 3.97x1073 0.17 69.38 11.52 3.34 1.12x107!
| = incompressible laminar wall jet since the viscosity gradient would be

Z Vorticity: -10-8 -6 -4 -2 0 2 4 6 8 10
CFWJ 2 67.5% inj 90%C suc C,=0.85%

0.1

y/C

Fig. 12. Spanwise vorticity contours showing three vorticity layers. Velocity
profiles at five stations of the CFWJ Case 2.

e CFWJ 2_C,=0.85%

- - -=-=-- CFWJ9_C =0.77%

0.5 b L
2 -15 -1 05 0 05 1 15 2 25 3 35

x/C

Fig. 13. C, distribution of the baseline case, Case 2, and Case 9.

in Fig. 14 (b), which transfers the momentum transversely to energize
the boundary layer. Such an effect may be insignificant for an adiabatic

near zero.

Also shown in Fig. 14 (a), the second-largest contribution to offset
adverse pressure gradient is the streamwise inertia term pudu/dx ex-
erted by the effects of CFWJ injection that boosts pu. An adverse pressure
gradient makes du/0x negative and thus the whole term is against the
adverse pressure gradient. The larger the APG, the greater magnitude
of the du/ox. Thus the capability of the streamwise inertia term to off-
set the APG will grow with the increasing APG, as long as the velocity
profile is established to match the compatibility condition. The trans-
verse convective term (—pvw, or pvou/dy) has a smaller positive value
contributing to the opposite for flow attachment. The reason can be ex-
plained below based on the continuity equation:

o0 __ou
dy  ox

The right hand side of Eq. (12) is positive due to a decreasing u in
APG, which makes the v increase in the transverse direction (y). Since
velocity is zero on the wall, v has to be positive above the wall. This
leads to the positive convective term (pvdu/dy or —pvw,) that penalize
the wall jet effect of separation mitigation. The larger the positive value,
the greater the penalty. Even though v << u, the transverse convective
term (pvou/dy or —pvw,) can be at a similar order of magnitude to the
pudu/ox term because the velocity gradient ou/dy, or the vorticity w,
is large due to the wall jet, as shown in Fig. 14 (b).

This also suggests that a tangential injection is desirable since it has
the minimum v and thus a minimal effect to enhance the adverse pres-
sure gradient. If the jet injection has an angle extruding to the main
flow, there will be a large positive v that enhances the flow separation.
For example, a strong jet injection 90° normal to the main flow would
create a large flow blockage and separation.

The relations among the terms of the wall jet momentum Eq. (3) de-
scribed above are clearly seen in Table 2 with the quantitative values of
Case 2 at y* =2. The LH S}, already becomes negative at this location.

Table 3 presents the quantitative values of each term in wall jet in-
tegral Eq. (5), where LH S, is the summation of all the terms on the
left-hand side. A CFWJ enhances the clockwise vorticity near the wall
and reduces 0 and 6*, which increases the Q factor. As a result, the S
factor is much larger than dp/dx and therefore keeps L H.S; value pos-

12)
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Fig. 14. Distributions of different terms in Eq. (3) at 2%C downstream of the injection slot with C,, =0.85%.

Table 4
CFWJ Case 9, terms in Eq. (3) at y* =2 at 1.5%C upstream of the suction slot.
Cases Location  C, pudu/ox  pvou/dy  —ou/dyou/dy/Re  dp/ox LHS)
CFWJ 9 68.5%C 0.77% -1.53 -8.91 -18.16 8.31 -20.29
. - of Case 2. In further downstream at x/C =0.8 as shown in Fig. 16 (c),

Z Vorticity: -10-8 6 -4 2 0 2 4 6 8 10
50%C inj 70%C suc C,=0.77%

CFWJ 9

y/C

0.65 0.7 0.75 0.8 0.85
x/C

Fig. 15. Spanwise vorticity contours showing three vorticity layers near injec-
tion slot. Velocity profiles at five stations of the CFWJ Case 9.

itive, indicating an attached flow with 7, > 0. The results in Table 3
are aligned with the analysis based on the turbulent wall jet differential
equation of Table 2.

4.2. Suction placed near separation onset point

Fig. 15 shows the vorticity contours of CFWJ Case 9 with veloc-
ity profiles at five locations. The injection of CFWJ Case 9 is located
upstream in the region of a favorable pressure gradient. In the CFWJ in-
jection region, Fig. 15 indicates a wall jet velocity profile and 3 layers of
counter-rotating vortex layers, which are thinner and shorter than those
in Case 2 in adverse pressure gradient.

Fig. 16 compares the velocity profiles of Cases 2 and 9 at three com-
mon locations. At the location x/C =0.6 in Fig. 16 (a), Case 2 has a
typical turbulent boundary layer profile and Case 9 has slightly protrud-
ing velocity profile due to the upstream wall jet injection. In Fig. 16 (b),
x/C =0.7 locates downstream the injection slot of Case 2 whose veloc-
ity profile presents a pronounced protruding pattern due to the wall jet
injection. For Case 9, x/C =0.7 is immediately downstream of the suc-
tion slot, however, its velocity profile is significantly weaker than that

the pronounced wall jet profile becomes smeared in Case 2 but still with
strong near wall momentum. Comparatively, Case 9 has velocity profile
further weakened due to overcoming the adverse pressure gradient at
the geometric diverging region.

Fig. 17 is the profiles of the different terms of the wall jet momen-
tum Eq. (1) for CFWJ Case 9 to show the suction dominant effect of
CFWJ. The profiles are plotted at 68.5%C location, 1.5%C upstream
of the suction slots. Again, L H.S, begins with a positive value at the
wall due to the effect of adverse pressure gradient. Away from the
wall, the LH .S rapidly returns negative to match the attached flow
concave velocity profile. The quantitative contributions near the wall
with yt =2 are listed in Table 4. The dominant term off-setting ad-
verse pressure gradient for this case is again the turbulent diffusion
term —du/dy - 0u/dy/Re as shown in Fig. 17 and Table 4. This is at-
tributed to the streamwise suction that creates an acceleration within
the boundary layer with increased wall spanwise vorticity. The trans-
verse convection term puvdu/dy, or the wall vorticity flux, has a much
larger contribution to offset the APG than the injection dominant Case 2.
This is benefited from the negative vertical velocity component pointing
to the wall due to the suction and the high spanwise vorticity that the
suction induces. That is, for the CFWJ suction, all the first three terms in
Eq. (1) contribute significantly to offset the adverse pressure gradient.
This streamwise suction capability to offset the APG also grows with the
APG.

Table 5 compares the values of each term of the integral form mo-
mentum Eq. (5) for CFWJ Case 9. The measured location is the same
as that for the differential momentum equation in Table 4 at 1.5%C
upstream of the suction slot. The streamwise suction combined with
the more-upstream injection substantially thins the boundary layer than
Case 2 with 6* and 6 reduced by more than 50%. With the reduced 6*
and 6, the compound S factor in Eq. (5) is substantially increased to
offset the adverse pressure gradient and attach the flow. Overall, both
CFWJ cases have sufficient S factor to offset the adverse pressure gra-
dient and make the sign of LH.S}, i.e., the wall shear stress, positive
with the attached elevated flow.

The analysis in this section indicates that both CFWJ injection and
suction contribute to overcoming adverse pressure gradients and sup-
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Table 5

CFWJ Case 9, terms in Eq. (5) at 1.5%C upstream of the suction slot.

Cases Location C 6 6

"

do/dx  Q S dp/dx LHS,

CFWJ9  68.5%C 0.77%  2.02x1073

1.21x1073

0.12 211.33 25.30 7.22 8.03x1072

pressing flow separation. The necessary condition to attach the flow in
APG is that a velocity profile with a positive du/dy (spanwise clock-
wise vorticity w, < 0) and a positive gradient of the vorticity magnitude
are established by injection, or suction, or their combined effects. To
effectively and efficiently achieve such a velocity profile and vorticity
distribution, either the injection or suction needs to be placed near the
flow separation onset location where the flow has the largest adverse
pressure gradient, but is not largely separated yet. Otherwise, placing
both the injection and suction in a deep separation region simultane-
ously will neither be efficient nor effective in establishing the required
velocity profile.

It should be noted that the present study adopts a two-dimensional
framework to isolate and understand the fundamental separation con-
trol mechanism of CFWJ. The real-world flows are inherently three-
dimensional. Spanwise momentum transfer and crossflow instabilities
can redistribute vorticity and turbulent diffusion, potentially changing
the local effects on the adverse pressure gradient. Nevertheless, the
mechanism study of CFWJ is more qualitative than quantitative, and
in the time average sense, the 3D boundary layer flow structure may
not be very significant for the study.

5. Conclusions

Based on the validated 2D URANS numerical simulation of the NASA
hump with CFWJ flow control and the analysis of wall jet momentum
equations, the following conclusions are drawn:

1. The CFWJ working mechanism includes the following three fac-
tors. 1) CFWJ establishes sufficient clockwise spanwise vorticity
and positive transverse gradient of vorticity magnitude at the wall
by tangential injection and streamwise suction. This is essential to
offset the APG by enhancing the turbulent diffusion and the wall
vorticity flux. 2) The wall jet provides the required streamwise mass
flux to enhance the streamwise inertia force that offsets the APG.
3) The control effects of turbulent diffusion and the streamwise in-
ertia force grow with APG provided that the factor 1) and 2) are
sufficiently established.

2. Turbulent diffusion near the wall is the most dominant term to
offset adverse pressure gradient for both the CFWJ injection and
suction. It plays a key role in wall jet mixing and energizing the
wall boundary layer.
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3. The CFWJ injection has a typical wall jet velocity profile with three
counter-rotating vorticity layers. The suction does not create the
counter-rotating vorticity layers. For a CFWJ injection, keeping the
injection tangential to the wall surface is most effective to min-
imize flow blockage, maximize the spanwise vorticity, turbulent
diffusion, and streamwise inertia force to offset the adverse pres-
sure gradient. For a CFWJ suction, a streamwise suction not only
enhances those same terms enhanced by the injection, but also
augments the transverse momentum term due to the velocity com-
ponent pointing to the wall.
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