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An efficient and accurate solver is developed to simulate the non-linear fluid-structural

interactions in turbomachinery flutter flows. A new low diffusion E-CUSP scheme, Zha

CUSP scheme, is developed to improve the efficiency and accuracy of the inviscid flux

computation. The 3D unsteady Navier-Stokes equations with the Baldwin-Lomax turbu-

lence model are solved using the finite volume method with the dual-time stepping scheme.

The linearized equations are solved with Gauss-Seidel line iterations. The parallel compu-

tation is implemented using MPI protocol.

The solver is validated with 2D cases for its turbulence modeling, parallel computation

and unsteady calculation. The Zha CUSP scheme is validated with 2D cases, including a

supersonic flat plate boundary layer, a transonic converging-diverging nozzle and a tran-

sonic inlet diffuser. The Zha CUSP2 scheme is tested with 3D cases, including a circular-

to-rectangular nozzle, a subsonic compressor cascade and a transonic channel. The Zha

CUSP schemes are proved to be accurate, robust and efficient in these tests.

The steady and unsteady separation flows in a 3D stationary cascade under high inci-

dence and three inlet Mach numbers are calculated to study the steady state separation flow

patterns and their unsteady oscillation characteristics. The leading edge vortex shedding is

the mechanism behind the unsteady characteristics of the high incidence separated flows.

The separation flow characteristics is affected by the inlet Mach number.



The blade aeroelasticity of a linear cascade with forced oscillating blades is studied

using parallel computation. A simplified two-passage cascade with periodic boundary con-

dition is first calculated under a medium frequency and a low incidence. The full scale

cascade with 9 blades and two end walls is then studied more extensively under three oscil-

lation frequencies and two incidence angles. The end wall influence and the blade stability

are studied and compared under different frequencies and incidence angles.

The Zha CUSP schemes are the first time to be applied in moving grid systems and 2D

and 3D calculations. The implicit Gauss-Seidel iteration with dual time stepping is the first

time to be used for moving grid systems. The NASA flutter cascade is the first time to be

calculated in full scale.
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The objective of this dissertation is to develop an efficient and accurate solver to sim-

ulate the non-linear fluid-structural interaction in turbomachinery flutter flow. The fully

implicit three-dimensional time accurate solver is developed to solve the non-linear Favre-

averaged Navier-Stokes equations with Baldwin-Lomax turbulence model. The governing

equations are discretized with the finite volume method. The inviscid flux on the con-

trol volume inter surface is calculated with several upwind schemes. A new low diffusion

E-CUSP scheme is developed to improve the efficiency and accuracy of inviscid flux com-

putation. The inviscid flux differencing achieves the third order accuracy by the MUSCL

differencing approach. The viscous flux achieves the second order with central differenc-

ing. A second order of time marching is achieved by using dual-time stepping scheme.

The Gauss-Seidel line iteration is applied on the inner pseudo time steps to implicitly solve

the linearized equations. The convergence is accelerated using the technique of local time

stepping. The parallel computation is implemented using MPI protocol.

The solver is first validated with several 2D cases. The Baldwin-Lomax turbulence

model is validated with a subsonic flat plate boundary layer flow and a transonic inlet

diffuser flow with the interaction between shock wave and boundary layer. The computed

velocity profile in the flat plate boundary layer agrees very well with the law of the wall.



The shock wave in the inlet diffuser is clearly captured and the pressure distribution is

compared well with experiment measurement. The flat plate boundary layer flow is further

used to test the parallel computation capability. A good wall clock time speedup scalability

is achieved when the job is computed with up to 10 processors. The solver’s unsteady

calculation capability is tested with the self-excited shock wave oscillation in the transonic

inlet-diffuser and a forced oscillating NACA 64A010 airfoil. The shock wave frequency in

the inlet diffuser and the unsteady coefficients of lift and moment of the airfoil are predicted

well compared with experiment measurement.

The new low diffusion E-CUSP scheme, Zha CUSP scheme, uses scalar dissipation and

is consistent with the characteristic direction of the disturbance propagation. It makes the

computation more CPU efficient and robust compared with other popular upwind schemes.

The Zha CUSP scheme is modified to Zha CUSP2 scheme to remove the temperature os-

cillation near wall boundary when grid is skewed. The Zha CUSP scheme is tested in 2D

cases. It accurately resolve the boundary layer velocity and temperature profile using the

first order differencing in a supersonic boundary layer flow. In a transonic converging-

diverging nozzle, the oblique shock waves and the reflections are crisply captured even

though the shock waves do not align with the mesh lines. The predicted wall surface isen-

tropic Mach number is compared well with the experiment. In the transonic inlet diffuser

case, the Zha CUSP scheme predicts the wall pressure as well as the Roe scheme and the

AUSM+ scheme. The Zha CUSP2 scheme is tested in 3D cases, including a circular-to-

rectangular nozzle, a subsonic compressor cascade and a transonic channel. The Zha CUSP

scheme predicts the wall surface pressure distribution well in the circular-to-rectangular

nozzle and the subsonic compressor cascade. The shock wave structure in the transonic

channel is better predicted using the Zha CUSP2 scheme than using the Roe scheme. The

Zha CUSP schemes are proved to be accurate, robust and efficient in these tests.

The steady and unsteady separation flow in a 3D stationary cascade under high in-

cidence and different inlet Mach numbers is calculated by the solver. The steady state

results capture the large separation when the incidence angle is large. The separation size



increases with inlet Mach number in subsonic region. In supersonic flow, the shock wave-

boundary layer interaction in the leading edge region pushes the separation region more

downstream and decreases the size of the separation. These results are in good agreement

with experiment. In the two subsonic unsteady simulation cases, the separation flow shows

a sinusoidal pattern on the oscillation of the surface pressure and the separation bubble

size. The leading edge vortex shedding is the mechanism behind the unsteady character-

istics of the subsonic high incidence separated flow. The characteristics of the separation

flow is determined by the inlet Mach number. The size and the oscillation intensity of the

separation bubble increase with the increased Mach number in subsonic region. The flow

is attached to the leading edge and a small separation bubble is located right after the shock

wave when the flow goes further into supersonic.

The parallel computation solver is used to study the blade aeroelasticity with the fluid-

structural interaction of a linear cascade with forced oscillating blades. The calculation is

carried out with 2 incidences and 3 oscillating frequencies. The cascade has a constant

IBPA (Inter Blade Phase Angle) of 180 degree. The calculation is first conducted in a

simplified 2-passage cascade with periodical boundary condition applied under a medium

frequency and a low incidence. The full scale cascade with 9 blades and 2 end walls are

then calculated under more extensive conditions. The comparison between the simplified

2-passage result and the corresponding full scale cascade shows the strong influence of the

end walls. Good spacial periodicity is achieved on the central passages in the full scale

cascade results. The 9 blades in the cascade are stable in all full scale results. The spatial

and temporal periodicity are decreased when the incidence increases. The suction surface

separation brings high unsteadiness to the flow field. The damping coefficients increase

with the increased oscillation frequency at low incidence, but decrease at high incidence.

The unsteady pressure coefficient and the local stability analysis in all the full scale results

compare well with experiment measurement in trend. The magnitude prediction does not

agree very well with the experiment.

In this dissertation, the Zha CUSP schemes are verified to be accurate and efficient and



are the first time to be applied in 2D and 3D calculations. The Zha CUSP schemes are the

first time to be applied in moving grid systems. The implicit Gauss-Seidel iteration with

dual time stepping is the first time to be used for moving grid systems. The NASA flutter

cascade is the first time to be calculated in full scale.
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Chapter 1

Introduction

1.1 Objective

One of the most important requirements in developing modern turbomachines, either jet

engines or stationary gas turbines, is the use of less primary energy by optimizing effi-

ciency [1]. This results in higher compressor pressure ratio, which leads to highly loaded

compressor stage with transonic or high-subsonic flow. Thinner blades are employed in the

modern turbofan engines to achieve high pressure ratio under high Mach numbers. Their

tip sections are usually thin and flat with low camber angles. However, these types of blades

are more vulnerable to flutter.

Flutter is one of the most complicated and challenging areas in turbomachinery design

and development. It is a highly undesirable and dangerous self-excited blade oscillation

mode. The blade flutter has a strong negative influence on the turbomachinery performance.

The high cycle fatigue problems resulting from the flutter are very detrimental to engine

reliability and must be avoided. However, the origins of the flutter are not fully understood

yet. Therefore, a great deal of flutter research has been carried out in recent years using

experimental methods [2] or computational methods [3].

In high subsonic or transonic regime, when engine speed is reduced along operating

line, the incidence increases with the reduced speed. The flow is very likely to separate on

1
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the suction surface at a part speed operating point. The large separation is considered as

one of the reasons to trigger stall flutter. The high subsonic and transonic torsional stall

flutter usually occurs near the fan stall limit line at speeds up to about 80% of the design

speed [4]. Another factor to trigger the flutter phenomenon is the shock wave motion

under transonic conditions. There are two distinct stall flutter regions in turbomachinery,

subsonic/transonic stall flutter and supersonic stall flutter [5]. The subsonic/transonic stall

flutter occurs at part speed operating conditions where the incidence angles are high and

the inlet flow is high subsonic or transonic. The supersonic stall flutter occurs at high speed

operating conditions in which the inlet flow is supersonic and detached leading edge shocks

are present.

Flutter is a complicated aeroelastic problem with highly coupled fluid-structural inter-

actions. To predict the flutter boundaries, a widely used method is the uncoupled energy

method [6]. The unsteady aerodynamic forcing for given blade natural vibration modes are

calculated and then the system stability is determined based on the net energy transfer. The

difficulty in the flutter research is to accurately predict or measure the unsteady pressure

distribution over the blade surfaces. Because the cascade test of unsteady transonic flow

is extremely difficult and costly, the computational methods gain more and more interest

in the area of flutter study. In recent years, tremendous advances have been achieved in

computer technology and the numerical methods. Computational fluid dynamics (CFD)

has become a valuable and widely used tool in turbomachinery design and research. Be-

cause of the unsteady separation and shock wave oscillation in the flutter phenomenon, the

numerical simulation is difficult and time consuming. This requires advanced numerical

algorithms with high accuracy and efficiency.

The objective of this dissertation is to develop an efficient and accurate Navier-Stokes

solver to simulate the three-dimensional compressible unsteady flow field with non-linear

fluid-structural interaction. The governing equations are discretized and solved in general-

ized coordinates with the dual time stepping method. A new efficient and accurate upwind

scheme is developed to compute the inviscid flux. The new scheme will be compared with
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other popular upwind schemes. The three dimensional flow separation in a linear cascade

will be studied using the solver. The solver will be implemented with parallel computation

to compute the multi-passage flow in the linear cascade, in which the blades oscillates with

a constant inter-blade phase angle(IBPA). The unsteady aeroelasticity of the blades under

different flow angles and oscillating frequencies will be studied.

1.2 Fluid-Structural Interaction Simulation in Turboma-

chinery

The governing equations for unsteady flow modeling is the full Navier-Stokes equations.

However solving the unsteady flow field is a very complicated and time consuming process.

It becomes even more difficult when strong viscous effect is involved, for example when

shock wave exists and it interacts with boundary layer. Unfortunately, this is the common

flow condition in most of the turbomachinery flows. For simplification, the early researches

are focused on solving the linearized Euler equations or the potential equations. With the

development of the computer technology and the advances in the numerical algorithms, the

numerical simulations in turbomachinery are able to solve the full 3D unsteady non-linear

Navier-Stokes equations. Remarkable improvements have been made in recent years.

1.2.1 Potential equation models

The early unsteady flow studies date back to the 1970s. Because of the lack of powerful

computers and efficient numerical methods, the governing equations used for the unsteady

flow were the unsteady small disturbance potential equations. Compared with the Euler

equations, or the Navier-Stokes equations, the potential equations are simpler and easier to

solve. Some examples are the unsteady flows around airfoils or in cascade reported in [7,8].

This method was improved to solve the linearized unsteady full potential equations in the

later work [9–12]. The potential equation solutions are more efficient in computing tran-
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sonic flows with shock waves than the Euler equation solutions [13]. However, because the

assumption of zero entropy change and vorticity production across shock wave it utilizes

is not strictly correct [13], the potential equation method is not appropriate in applications

with strong shock waves.

Different from the potential equation method, the linear and non-linear models based

on the Euler or Navier-Stokes governing equations with primitive variables are used in the

later researches.

1.2.2 Linear models

The commonly used unsteady flow models for aeroelastic investigations are limited to two-

dimensional linearized methods in late 1980s. The time-dependent flow is linearized with

respect to the steady flow. The unsteadiness in the flow is assumed to be a small disturbance

of a known average flow and the full Euler or Navier-Stokes equations are approximated

by a set of linear equations for the unsteady flow values [14]. The problems are further

simplified by assuming harmonic time-dependency of all unsteady equations. After these

simplification, the computations achieve good efficiency and are good for routine aeroelas-

tic design studies.

The Early methods for unsteady flow over oscillating blades apply the time linearized

models in a global [15] or local [16] sense. More recent study using the linearized Euler

equation methods are the works of Hall et al. [17], Kahl et al. [18] followed by Mont-

gomery et al. [19]. These studies are based on the linearized Euler equations. The works

of Holmes et al. [20] and Clark et al. [21] are based on the linearized Navier-Stokes equa-

tions. Shabata and Kaji [22] analyzed the bending flutter for the tip section of a transonic

fan using a linearized unsteady two-dimensional Euler analysis and found that the shock-

induced unsteady aerodynamic loading on the airfoil suction surface produced the largest

destabilizing force for unstarted supersonic inlet flows.

The linearized solver is very fast and robust even for transonic flow with shocks. How-

ever, because it imposes limits on the oscillation amplitudes and assumes no nonlinear flow
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phenomena produced by these oscillations, the solutions fail to predict the unsteady be-

haviour of the flow accurately when the amplitude of the oscillating blade is high or the

pressure fluctuations due to shocks are larger than approximate 10% of the steady state

solution [1].

1.2.3 Non-linear models

In reality, the unsteady flow field in turbomachinery may not respond to oscillating blades in

a linear way owing to the strong nonlinear effects in unsteady transonic or supersonic flows.

With the rapid advances in CFD and computer technology, the time-linearized models are

gradually replaced by nonlinear flow models in recent years. The unsteady solutions of the

full Euler and Navier-Stokes equations by time-marching methods become more and more

popular.

Solutions of the Euler equations by time marching methods for unsteady flows in os-

cillating blades were developed by different researchers, including Jourbert [23], Koya et

al. [24], Gerolymos [25], He [26], Peitsch et al. [27], Huff et al. [28], and Carstens [29].

Gerolymos [30] developed one of the early full 3D Euler methods followed by He et

al. [31], Carstens [32], Peitsch et al. [33] and Peitsch et al. [34]. A sizable body of literature

exists on the unsteady calculations of inviscid rotor-stator interaction phenomena [35–40].

The viscous effects in unsteady flow fields in turbomachines are taken into account

by solving the Euler equations coupled with a boundary layer model or by solving the

Reynolds averaged Navier Stokes equations directly. He et al. [41] calculated the flow

around vibrating blades by coupling the Euler equations to an integral boundary layer so-

lution. Ekaterinaris et al. [42] studied a vibrating rotor blade of a helicopter with stalled

flow using a thin-layer Navier Stokes method. Abhari et al. [43] published their work on

integrating the 2D Navier Stokes equations with a thin shear layer model.

The inviscid models are more efficient in computation than the viscous models. How-

ever, when strong shocks and separation flows are involved, the inviscid models do not

perform as accurately as the viscous models. The inviscid solutions often over-predict the
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strength of the shock as reported by Brenneis [44]. Grüber et al. [14] studied the influence

of viscous effects on the damping behavior of a transonic compressor cascade with tuned

pitching oscillation. The results showed that the viscous effects may cause a significant

change in the aerodynamic damping. Ji et al. [45] solved both Euler and Navier-Stokes

equations for the flow in a transonic oscillating cascade.

As mentioned above, the blades in modern turbomachinery compressor usually work

in transonic regime. The flow is characterized by the occurrence of shock, shock-boundary

layer interaction and by flow separation on suction surfaces. These phenomena mix with

blade oscillation and the flows become more complicated. To simulate these flows accu-

rately, the viscosity and turbulence effects are necessary to be incorporated. The inviscid

models should be replaced by the Navier-Stokes models in predictions of the aeroelastic

performance of turbomachinery blades. The Navier-Stokes method gains more and more

popularity in the simulations of complex, unsteady, turbulent flows [41].

Several time marching solutions for the unsteady Reynolds-averaged Navier-Stokes

equations have been developed for blade row interactive flows and for oscillating cascade

flows [26, 46–50]. More unsteady Navier-Stokes calculation are found in the works of

Nakahashi et al. [51], Rai et al. [52] and Scott et al. [53] . Hwang et al. [54] solved 2D

steady and unsteady turbine cascade flows by both Euler and Navier-Stokes equations with

the Baldwin-Lomax turbulence model. Abhari et al. [43] computed aerodynamic damp-

ing using a hybrid structured and unstructured grid. He et al. [55] obtained 3D unsteady

inviscid and viscous flow solutions over vibrating blades. Sanders [5] experimentally and

numerically studied the stall flutter in a transonic low-aspect ratio fan blisk. The numerical

simulations are performed using an unsteady three-dimensional nonlinear viscous solver

with the effects of tip clearance and vibration amplitude.

Recent steady and unsteady stall computations for single airfoils have yielded remark-

ably improved agreement with measurement by utilizing appropriate turbulence models

and laminar-turbulent transition models. The widely used turbulence models include the

Baldwin-Lomax algebraic turbulence model [56], the one-equation Baldwin-Barth model
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[57], the Spalart-Allmaras model [58] and the Wilcox’s κ � ω model [59]. Some good

results are reported in the works of Ekaterinaris et al. [60], Sanz et al. [61], Weber et

al. [62, 63], Grüber et al. [14] and Ji et al. [45]. In the work of Grüber et al. [14], a self-

induced shock oscillation due to shock-boundary layer interaction is simulated with the

Baldwin-Lomax model. The prediction of the shock amplitude is significantly improved

by a slight modification of the turbulence model. A 2D solver for the Reynolds aver-

aged Navier Stokes equations using an extended turbulence model by Granville or a low

Reynolds number κ � ε model by Chien for the numerical analysis of unstalled flutter has

been developed by Eguchi et al. [64]. Grüber et al. [65] have presented a 2D Navier Stokes

solver with the Baldwin-Lomax turbulence model .

However the simulation for strong viscous flows are still fraught when compared with

the experiments. Some aeroelasticity phenomena, including stall flutter, are still not pre-

dicted well. The uncertainties are caused by the laminar-to-turbulent transition model, the

turbulent flow with strong flow oscillation and the three dimensional separation in flutter

and the shock wave oscillation in high subsonic/transonic stall flutter [63].

In turbomachinery designs, even though the empirical relations are still widely used,

efforts have been made to apply the fully unsteady nonlinear three-dimensional Navier-

Stokes analyses to predict the stall flutter characteristics for advanced fans and compres-

sors. Weber et al. [1] presented a time accurate Navier Stokes code for S1-stream surfaces

to improve the numerical analysis and prediction of unsteady flow through turbomachine

cascades with vibrating blades. It computes the sub and transonic viscous flow in a sin-

gle passage on S1 stream surfaces of revolution following the theory of Wu [66] with a

harmonically oscillating blade using a periodic boundary condition by Erdos et al. [67].

Silkowski et al. [68] described how the CFD based techniques can be applied to solve a

wide variety of aeroelastic problems in the design phase. Their flutter predictions for a

transonic fan agreed fairly well with the test data. Srivastava et al. [69] utilized an unsteady

3D Navier-Stokes analysis to investigate the flutter characteristics of an advanced forward

swept fan design that encountered stall-side flutter.



8

1.2.4 Time marching methods

The computing cost is a particular concern when the full non-linear time dependent Navier-

Stokes equations are solved for an unsteady flow. The computation cost becomes more

severe for transonic flow cases in complicated 3D geometry with shock-boundary layer

interaction, large separation and fluid-structural interaction.

The linear algebraic equations resulting from the discretization of the governing equa-

tions are solved with implicit or explicit methods. The implicit schemes allow the use of

large time steps but usually require large computation time for each time step. The explicit

schemes are efficient in time marching on each time step, but the magnitude of the time

step is restricted by the Courant-Friedrichs-Levy (CFL) condition number to ensure the

numerical stability.

The issue of time step becomes more important in the strong viscous flows where flow

field characteristics are highly influenced by the viscous layers in the vicinity of solid sur-

faces or shock waves. The mesh should be refined in these high viscous regions to capture

the flow details. The mesh size will vary in the magnitude of several orders in the com-

putation domain. Because the explicit time accurate methods must advance all cells in the

computational domain with a uniform time step to maintain consistency, the global time

step limited by the most restrictive of allowable time steps in the domain will be quite

small. Usually this time step will be much smaller than the time step required by the so-

lution accuracy of the problems [70]. This make the explicit method very inefficient in

unsteady simulation.

For steady flow calculation, where the time accuracy is not required, the CFL limitation

can be relieved. The numerical convergence can be improved by several pseudo-time-wise

acceleration techniques, such as multi-grid [71, 72], non-uniform local time-stepping [73].

The multi-grid method accelerates the convergence by applying multiple layers of grids in

numerical iterations. The low frequency error on the fine grid is effectively removed by the

solution on the overlayed coarser grid. In the local time stepping method, the convergence

is accelerated by advancing the solution by the local maximum possible time step on each
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grid point, instead of the uniform time step for the whole domain.

These techniques are not directly applicable in unsteady simulations where time accu-

racy is required. The time-wise implicit schemes can then be used to overcome the time

step limitation. However the overall efficiency of the implicit schemes is still low because

of the large amount of matrix inversion. The 3D linearized algebraic equations are usually

solved using the Approximate Factorization (AF) schemes [74,75]. However the factoriza-

tion error is time step magnitude dependent. The time accuracy and the convergence are

affected when larger time step is used.

Jameson formulated a so called dual stepping scheme [76] to combine the advantages

of both the explicit and implicit schemes to achieve an efficient and accurate unsteady time

marching. At the first step, the explicit time step limitation is bypassed by formulating

the unsteady problem in an implicit form. Then at each time step, the implicit set of the

equations are treated as a modified steady state problem on an inner pseudo time step. In

this way, all the acceleration techniques for explicit schemes are able to be applied in the

iterations over the pseudo time step. Great improvement in the computation performance is

achieved without losing time accuracy [70]. This method is originally developed for Euler

equations [76] and is further applied to Navier-Stokes equations [77]. Currently this scheme

is adopted by many researchers in their unsteady elastic studies. Aloso et al. [70] calculated

the unsteady shedding flow behind a circular cylinder and the unsteady aerodynamics of a

pitching NACA 64A010 airfoil. McBean et al. [78] simulated a 2D unsteady oscillating

turbine cascade. Ji et al. [45] calculated the flow in an oscillating compressor cascade.

Cinnella et al. [79] adopted this method in their turbomachinery aeroelasticity numerical

method.

1.2.5 3D calculations

The turbomachinery blade channel flows in reality exhibits high three-dimensional char-

acteristics, for example, 3D flow separation. It is desirable to simulate the aerodynamic

and aeroelastic problem with 3D codes. However, solving the fully 3D problems, which is
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very time consuming, requires high computation cost. A good simplification is to use the

so-called quasi-3D Navier-Stokes method. The governing equations are expressed on the

S1-stream surfaces of revolution. The three-dimensional flow effects are represented by a

stream surface thickness varying with the streamwise location [63].

Joubert performed an unsteady quasi-3D Euler calculation and showed that the shock

oscillation is indeed a source of blade excitation [23]. Weber et al. presented a quasi-3D

solver and validated the solver by simulating the Standard Configuration No. 4 [1]. Then

the solver is further used to calculated the flow over an oscillating cascade under different

frequencies and incidences [63]. The results obtained by the quasi-3D solver yielded good

agreement with the steady and unsteady measurement. Isomura [80] studied the bending

mode flutter of a modern transonic fan using a quasi-3D viscous unsteady CFD code. More

application of the quasi-3D method can be found in the works of He [31], Abhari and

Giles [43], Grüber et al. [65], Tuncer et al. [81], Carstens et al. [82], Lin et al. [83] and

Ji [45].

Three-dimensional flutter computations are presently being developed by a limited

number of researchers. Gerolymos et al. [84] and Chuang et al. [85] studied the turbo-

machinery aeroelasticity with 3D Euler simulations. McBean et al. [86] developed a 3D

Navier-Stokes code for the aeroelasticity in turbomachinery. The code is used to calculate

the Srandard Configuration 4 in 3D annular turbine cascade [87]. However, the 3D flutter

computation is still premature for the analysis of stall flutter.

1.2.6 Phase-shift boundary condition

In the unsteady turbomachinery studies, the flutter calculation usually follows Lane’s trav-

eling wave model [88]. The blades are assumed to vibrate with the same frequency and a

constant IBPA. When the IBPA is not zero, two neighboring blades oscillate with a constant

phase shift, which makes the conventional periodic boundary not applicable in the blade

oscillation unsteady simulation. In order to calculate such flows within a single passage,

a phase-shift boundary condition is applied instead. The phase-shift boundary condition
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implies periodicity spatially and temporally.

The most widely used implementation of the phase-shift boundary condition is sug-

gested by Erdos et al. [67] and is called the “direct store” method. The primitive flow

variables on the periodic boundary over a whole period of time are saved and the boundary

variables for current solutions are updated based on the saved variables by considering the

current time and the specific IBPA. The implementation of this method is straightforward.

However it requires a large amount of computer storage, especially for explicit time march-

ing schemes. This method is widely adopted by different researchers. Ji et al. [45] applied

this method in their oscillating transonic cascade Navier-Stokes calculation and compared

its performance with a parallel computing method. Weber et al. [63] used this method to

calculated a stall flutter cascade. More applications of the “direct store” method can be

found in the works of He et al. [26] and Abhari et al. [43].

The storage requirement can be relieved very much by using the dual-time stepping

method, where the physical time step is much larger than the explicit method. However,

the computation time to reach the final periodic solution may be prolonged by the direct

store method [45]. The phase-shift periodic boundary conditions is applied in an iterative

manner. The stored flow field history used to set the boundary condition for the computa-

tion of the next period is form a less converged solution.

In order to save storage, Giles [89] developed a space-time transformation method. The

computation time plane is inclined along the blade pitch direction according to a given

IBPA. The phase-shifted boundary condition is applied as the ordinary zero phase-shift pe-

riodic condition. However, the time-inclination angle and therefore the IBPA is restricted

by the characteristics of the governing equations. He [26] suggested a shape correction

method. The Fourier components of the approximate Fourier series of the flow variables

instead of the time-wise flow parameters are stored. The computer storage is greatly re-

duced, but extra computation time is added.

With the advance in computer technology, the parallel computers or the clustered com-

puter networks with distributed memory become popular. A cost efficient parallel com-



12

putation with the message passing interface (MPI) protocol [90] provides a powerful way

to calculate the multiple passage flows. By assigning each passage a processor, the multi-

passage flow calculation can be carried out simultaneously for all passages involved. After

each iteration, the neighboring passages exchange their boundary information simultane-

ously. The phase-shift boundary assumption is eliminated. The computation is easier to

implement and the results are more close to reality. In parallel computation, the computing

jobs should be evenly distributed on all involved processors to achieve better scalability.

With the availability of parallel computers consisting hundreds or even thousands of pro-

cessors, it become feasible to simulated a complete blade row or even multiple stages in

turbomachines. In such cases, the parallel computation is very flexible. It can be based

on a parallel computer with multiple CPUs and shared memory installed or on a cluster of

workstations with distributed memories. The parallel computation is adopted in the works

of Ji et al. [45], McBean et al. [78, 86, 87] and Cinnella et al. [79].

The parallel computation becomes even more useful when the mistuned oscillation is

considered [3]. In reality, the spatial and temporal periodic assumption is not valid in most

cases. The flow may be non-periodic in time or space or it is periodic but with multiple

non-harmonic frequencies. The phase-shift boundary condition may not be valid any more.

The flow will have to be calculated individually in multiple passages. This can be easily

and efficiently handled by parallel computation.

1.3 Upwind Schemes

The fundamental problem in solving Euler or Navier-Stokes equations with control volume

method is to compute the surface flux correctly and efficiently. Development of an accurate

and efficient numerical scheme for compressible flow governing equations is essential due

to the increasing engineering demand for aircraft and spacecraft design [91]. Such a scheme

is particularly important when aircraft engine aeroelasticity problems are simulated using

a fully coupled fluid-structural interaction model, which is usually very CPU intensive.
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The early schemes used in 1960-1970’s are mainly based on central differencing. They

are inherently unstable and artificial dissipation is required to suppress the oscillation near

a shock. The artificial dissipation is usually difficult to devise appropriately and it may

smear out the captured shock wave [92]. The upwind schemes are designed to make the

flux computation follow the characteristic directions of the governing equations and are

employed in many of the current CFD codes.

The upwind schemes are categorized into flux-difference splitting (FDS) schemes and

flux-vector splitting (FVS) schemes. In the FDS schemes, the changes in the flux quanti-

ties at the control volume inter surface are interpreted as being caused by a series of waves.

The FVS schemes are interpreted as schemes that transport particles according to the char-

acteristics information [93, 94]. The upwind schemes have inherent numerical dissipation,

which makes the artificial dissipation unnecessary. However, problems will be encountered

when the numerical dissipations are too large and the real dissipations are distorted [92].

Roe developed one of the most well known FDS schemes, the Roe scheme, in 1981

[95]. The numerical flux expression incorporates upwind influence through the addition of

contributions across positive and negative waves. The matrix of the dissipation vector is

calculated using the Roe-average variables. The Roe scheme was considered as the most

accurate scheme among the available differencing schemes in 1987 [96]. The disadvantage

of the Roe scheme is its time consuming matrix operation.

The FVS schemes split the flux contributions into positive and negative components

based on the eigenvalue structure of the system or some other appropriately assumed be-

havior [94]. Because they use scalar dissipation instead of matrix dissipation, the FVS

schemes are simpler in formulation and more efficient than the accurate Roe scheme.

Steger et al. [74] developed the Steger-Warming scheme in 1979. They split the flux

vector into two sub-vectors according to the information travel direction. The two sub-

vectors are based on the positive and negative parts of the eigenvalue matrix respectively.

The fatal disadvantage of the Steger-Warming scheme is its large numerical dissipation,

which does not vanish in any discontinuities. It smears out the discontinuities and distorts
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the viscous solutions. Besides, the Steger-Warming scheme is not continuously differen-

tiable at sonic and stagnation points, therefore a glitch will be yielded at these points. The

van Leer scheme suggested by van Leer in 1982 [97] removes the discontinuities and make

one of the eigenvalues vanish in subsonic region, which results in sharper shock compared

with the Steger-Warming scheme. However, the van Leer scheme is also dissipative. It

works very well in inviscid flow fields, but broadens the viscous boundary layer. A low

diffusion FVS scheme was developed by Zha and Bilgen in 1993 [98]. The Zha-Bilgen

scheme has the individual mass flux vanishing when the velocity approaches zero. It hence

achieves very low numerical dissipation. However, the Zha-Bilgen scheme may generate

non-smoothness in multi-dimensional flows.

Efforts have been made to improve the original van Leer scheme by using some tech-

niques borrowed from FDS schemes. The original van Leer scheme is further improved

by other researchers. For example, the van Leer-Hänel scheme [99], which uses the net

mass flux and one side velocity and total enthalpy for the transverse momentum and energy

equations, achieves an accurate temperature profile for the supersonic conical viscous flow.

More recent FDS schemes include the AUSM family schemes of Liou represented by their

latest scheme of AUSM
�

[100–104], Edwards’s LDFSS schemes [105], Jameson’s CUSP

schemes and limiters [106, 107], and the schemes developed by Zha, et al. [108, 109], etc.

Pioneered by Liou and Steffen [100,102–104], the researchers seeking the scalar dissi-

pation primarily follow the guideline that the velocity and pressure should be separated to

consider their characteristics representing the physics of the convection and waves. Liou

and his colleagues termed their schemes as advection upstream splitting method(AUSM)

schemes, and Jameson gave the name of convective upwind and split pressure (CUSP)

schemes [106,107]. The name of CUSP seems more precisely reflecting the physical mean-

ing.

As pointed out by Jameson [106,107], the CUSP schemes can be basically categorized

to two types, the H-CUSP schemes and E-CUSP schemes. The H-CUSP schemes has

the total enthalpy from the energy equation in their convective vector, while the E-CUSP
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schemes use the total energy in the convective vector. The Liou’s AUSM family schemes,

van Leer-Hänel scheme [99], and Edwards’s LDFSS schemes [105] belong to the H-CUSP

group. The schemes developed by Zha [98, 108] belong to the E-CUSP group. Jameson

suggested schemes for both groups [106, 107].

The H-CUSP schemes such as AUSM family schemes may have the advantages to bet-

ter conserve the total enthalpy for steady state flows and have achieved great success. How-

ever, from the characteristic theory point of view, these schemes are not fully consistent

with the disturbance propagation directions, which may affect the stability and robustness

of the schemes [110]. A H-CUSP scheme may have more inconsistency when it is extended

to moving grid system. It will leave a pressure term multiplied by the grid velocity in the

energy flux that is not contained in the total enthalpy and the term will be treated as a part

of the pressure term. From characteristics point of view, it is not obvious how to treat this

term in a consistent manner [111]. By splitting the eigenvalues of the Jacobians to con-

vection (velocity) and waves (speed of sound), one will find that the convection terms only

contain the total energy [98], which will lead to the E-CUSP schemes. However, the early

E-CUSP schemes could not handle contact discontinuities [98, 106, 107]. Borrowing from

AUSMDV scheme [101], Zha used the interface speed of sound and made his E-CUSP

scheme able to capture exact contact discontinuities [108, 109]. However, due to lacking

proper numerical dissipation, the scheme will generate odd-even pressure oscillations when

applied to multi-dimensional flows.

Recently, Zha and Hu [110] suggested an efficient E-CUSP scheme (named as Zha

CUSP) which is consistent with the characteristic directions. The scheme has low diffusion

and is able to capture crisp shock profiles and exact contact discontinuities. The scheme is

shown to be accurate, robust and efficient. In addition, the Zha CUSP scheme is straight-

forward to be extended to moving grid system [111]. The original Zha CUSP scheme is

further modified to remove the temperature oscillations occurring occasionally near walls,

in particular when the mesh is skewed. Zha modified the Zha CUSP scheme to Zha CUSP2

scheme by replacing the pressure in the dissipation of energy equation with the total en-
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thalpy [112]. The modified scheme also yields more precise wall surface temperature even

at coarse grid.

1.4 Summary of Present Work

In the current work, a 3D unsteady Navier-Stokes solver is developed as the first step to-

wards the aim to study the full non-linear turbulent fluid-structural interaction in turboma-

chinery. The contents of the current work are summarized below.

The unsteady 3D Navier-Stokes governing equations are derived from the fundamental

conservation laws of mass, momentum and energy. The equations are then taken the Favre-

average to consider turbulence effects. The Baldwin-Lomax turbulence model is applied for

the turbulence modeling. Finally the governing equations are expressed in the generalized

coordinates to handle complex geometry.

The inviscid flux on the control volume surface is calculated using upwind schemes.

A high resolution low diffusion Zha CUSP upwind scheme is developed and updated to

achieve high computation efficiency and accuracy. The new scheme strictly follows the

characteristic directions of the disturbance propagation, which is believed to improve the

computation stability. The numerical diffusion of the new scheme is lower than the Roe

scheme and it is more efficient in computation than the Roe scheme.

The governing equations are discretized with the finite volume method. The result-

ing linear algebraic equations are implicitly solved using the Gauss-Seidel line iteration

method. The convergence is accelerated using the technique of local time stepping. The

third order of accuracy is achieved in the space differencing for inviscid flux using the

MUSCL approach. The second order of central differencing is adopted for the viscous

flux. The unsteady time marching is carried out with the dual time stepping method to

achieve the second order of temporal accuracy. A pseudo time step is added within each

physical time step. The numerical iterations are conducted over the pseudo time step un-

til a converged solution is obtained to finish one physical step time marching. The solver
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is made parallel using the MPI protocol. The moving grid system is implemented in the

solver.

The code is validated with a series of test cases for its turbulence modeling, parallel

computation scalability and unsteady simulation. The turbulence modeling is validated us-

ing a supersonic flat plate boundary layer flow and an inlet-diffuser transonic flow. The

flat plate boundary layer flow is further used to test the parallel speedup scalability of

the solver. The self-excited shock wave oscillation in the stationary inlet-diffuser and the

unsteady flow over a forced oscillating airfoil are calculated to validate the unsteady calcu-

lation capability.

The newly developed Zha CUSP schemes are compared with other popular upwind

schemes. The 2D cases include a flat plate boundary layer flow, a transonic converging-

diverging nozzle and the transonic inlet-diffuser. The 3D cases include a transonic channel,

a circular-to-rectangular duct and a 3D compressor cascade.

The 3D Navier Stokes solver is then used to study the separation flow in the 3D tran-

sonic cascade under high incidence. Both steady and unsteady simulations are conducted

for a central passage in the cascade with different inlet Mach numbers. The computation re-

sults are compared with experiment measurement. The unsteady periodic vortex shedding

mechanism behind the unsteady separation phenomenon is studied in details.

The aeroelasticity of the blades vibrating within the linear NASA flutter cascade is

calculated in parallel. The simulation is carried out in 2D condition. The simplified 2-

passage cascade is first calculated with a medium frequency and a low incidence angle.

The mesh dependence of the computation results are studied with the simplified cascade.

More extensive studies are carried out for the influence of the oscillation frequencies and

the incidence angles on the blade aeroelasticity. The numerical results are compared with

experiment measurement.

In this dissertation, the Zha CUSP schemes are the first time to be applied in 2D and

3D calculations. The Zha CUSP schemes are the first time to be applied in moving grid

systems. The implicit Gauss-Seidel iteration with dual time stepping is the first time to be
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used for moving grid systems. The NASA flutter cascade is the first time to be calculated

in full scale.



Chapter 2

Governing Equations

In the current work, both two dimensional and three dimensional problems are numerically

studied. The code is developed in 3D form for generality. The two dimensional compu-

tation is made possible by assuming unit length in the third dimension. In this chapter,

the governing equations are derived from the fundamental physical conservation laws of

mass, momentum and energy. They are expressed in conservative forms to be able to cap-

ture discontinuities in compressible flows. The governing equations are normalized with

free stream variables. The generalized coordinates are employed to transform an arbitrary

physical domain to a well-constructed computation domain. The governing equations are

transformed to and are discretized in the computation domain with the generalized coor-

dinates. The Baldwin-Lomax turbulence model is applied to simulate the flow turbulence.

The moving grid system is employed in the solver to study the cases with moving solid

boundaries.

2.1 3D Navier-Stokes Equations

The fundamental governing equations are the compressible Navier-Stokes equations de-

rived from the physical laws of the continuity of mass, conservation of momentum and the

conservation of energy. They are expressed as the following [94],

19
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1. Conservation of mass (continuity of mass):

Dρ
Dt

	 ρ 
 ∇ � V � � 0 (2.1)

2. Conservation of momentum (Newton’s second law of motion)

ρ
DV
Dt � ρf 	 ∇ � Π (2.2)

3. Conservation of energy (the first law of thermodynamics)

D 
 ρe �
Dt � � ∇ � q 	 ρf � V 	 ∇ �
 Π � V � (2.3)

In the above equations, t is time, ρ is the density, V is the flow velocity vector,

V � ui 	 vj 	 wk (2.4)

u, v, w are the velocity components in x, y, z direction respectively. q is the conductive heat

flux vector,

q � qxi 	 qyj 	 qzk (2.5)

f is the body force. e is the total energy per unit mass,

e � cvT 	 1
2

�
u2 	 v2 	 w2 � (2.6)

where cv is the constant volume specific heat coefficient, T is the static temperature.

The stress tensor Π is frequently separated as the following,

Πi j � � pδi j 	 τi j (2.7)
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where p is the static pressure, Indies i � 1 � 2 � 3 and j � 1 � 2 � 3 indicate x, y and z directions,δi j

is the Kronecker delta function,

δi j � ���� ��� 1 when i � j

0 when i �� j
(2.8)

τi j is the viscous stress tensor and is written as,

τi j � µ ��� ∂ui
∂x j

	 ∂u j

∂xi � � 2
3

δi j
∂uk
∂xk � i � j � k � 1 � 2 � 3 (2.9)

µ is the molecular viscosity and is computed by the Sutherland’s law [113],

µ � C1
T 3 � 2

T 	 C2
(2.10)

where C1 � 1.458 � 10 � 6 kg ��
 m � s ��� K � , C2 � 110.4 K.

The substantial derivative D
Dt is defined as,

D
Dt � ∂

∂ t
	 uk

∂
∂xk

(2.11)

The repeated index k stands for the summation over x, y, z direction (k � 1 � 2 � 3) following

the Einstein convention.

The heat flux q is given by the Fourier’s law,

q � � k∇T (2.12)

where k is the Fourier coefficient of heat conductivity.

Substitute Eqs. (2.11) through (2.12) into the governing equations (2.1) through (2.3)

and neglect the body force f, the governing equations are re-written into the following

conservative forms,
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∂ρ
∂ t

	 ∂ρuk
∂xk

� 0 (2.13)

∂ρui
∂ t

	 ∂ρuiuk
∂xk

� � ∂ p
∂xi

	 ∂τik
∂xk

(2.14)

∂ρe
∂ t

	 ∂ 
 ρe 	 p � uk
∂xk

� ∂  qk 	 τ jku j !
∂xk

(2.15)

The governing equations are further closed by the equations of state with the assumption

of perfect gas,

p � ρRT (2.16)

ρe � p
γ � 1

	 1
2

ρ
�
u2 	 v2 	 w2 � (2.17)

where R is the gas constant γ is the specific heat ratio taken the value of 1.4 for air.

2.2 The Favre-Averaged Navier-Stokes Equations

When the Reynolds number is high enough, the flow becomes turbulent. A large range

of temporal and spatial scales exist in the flow domain. It is not feasible to solve the 3D

Navier-Stokes equations directly for engineering turbulent flows, because the mesh size

required will be too large and the computation will be too expensive. In engineering point

of view, the macro average flow properties are of more interest. Therefore, the governing

equations are reformulated using appropriate averaging process. The turbulent effects are

considered with the help of turbulence models.

The Reynolds average is a long time average for any flow variable. The Favre average

based on the long time mass average is adopted for compressible flows [114].

The Favre Average of an fluctuating variable f is defined as,
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f̃ � 1
ρ̄ " t0

� ∆t

t0
ρ f dt � ρ f

ρ̄
(2.18)

where the tilde stands for the Favre average and the overbar stands for the Reynolds aver-

age. The average is taken over a time interval ∆t starting from an arbitrary time t0. ∆t is

significantly larger than the period of the fluctuating quantities but smaller than the time

interval associated the mean flow.

The Reynolds averaging is defined as,

f̄ � 1
∆t " t0

� ∆t

t0
f dt (2.19)

The instantaneous variables in the governing equations (2.13) through (2.15) are then

decomposed into an averaged mean and a local fluctuation term. The averaged means of

the density ρ , static pressure p, stress tensor τi j and heat flux qi are based on the Reynolds

averaging,

ρ � ρ̄ 	 ρ
� � p � p̄ 	 p

� � τi j � τ̄i j 	 τ
�
i j � qi � q̄i 	 q

�
i (2.20)

For the velocity components ui, the internal energy e, the molecular viscosity coefficient µ ,

the static temperature T and the heat conductivity k, the averaged means are based on the

Favre averaging,

ui � ũi 	 u
���
i � e � ẽ 	 e

��� � µ � µ̃ 	 µ
�#� � T � T̃ 	 T

��� � k � k̃ 	 k
���

(2.21)

Substitute the variable decompositions of Eq. (2.20) and Eq. (2.21) into the governing

equations (2.13) through (2.15). After rearrangement and simplification, the Favre aver-

aged Navier-Stokes Equations are expressed as the following,

∂ ρ̄
∂ t

	 ∂ ρ̄ ũ j

∂x j
� 0 (2.22)
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∂ ρ̄ ũi
∂ t

	 ∂ ρ̄ ũiũk
∂xk

� � ∂ p̄
∂xi

	 ∂
�
τ̄ik
� ρu

���
i u
���
k
�

∂xk
(2.23)

∂ ρ̄ ẽ
∂ t

	 ∂ 
 ρ̄ ẽ 	 p̄ � ũk
∂xk

� ∂ $ ũ j 
 τ̄ jk
� ρu

���
j u
���
k �%	 �

q̄k
� cpρu

���
k T
��� �&

∂xk
(2.24)

where cp is the constant pressure specific heat coefficient.

Compared with Eqs. (2.13) through (2.15), the two extra terms in the Favre averaged

Navier-Stokes equations are the turbulent shear stress � ρu
�#�
i u
�#�
k (Reynolds stress) and tur-

bulent heat flux � cpρu
���
k T
���

, which represent the turbulent transport of momentum and

energy. In the eddy viscosity based turbulence models, these two terms are related to the

gradient of the mean flow variables and are expressed in a form similar to the mean flow

shear stress and mean flow heat flux based on the Boussinesq assumption [113].� ρu
���
i u
�#�
k � µt � ∂ ũi

∂xk
	 ∂ ũi

∂xi

� 2
3

∂ ũ j

∂x j
δik � (2.25)

� cpρu
���
k T
��� � kt

∂ T̃
∂xk

(2.26)

where µt is called the turbulent viscosity, kt is the turbulent conductivity,

kt � µtcp

Prt
(2.27)

Prt is the turbulent Prandtl number taking the value of 0.9.

Substitute Eqs. (2.25) and (2.26) into the governing equations (2.23) and (2.24). The

Favre-Averaged Navier-Stokes equations can be transformed to a similar form like that in

laminar flow by replacing the molecular viscosity µ in the stress terms by µ 	 µt and the

term µ � Pr in the heat conduction term by µ � Pr 	 µt � Prt . Pr is the Prantdl number.

Eqs. (2.23) and (2.24) are re-written as the following,

∂ ρ̄ ũi
∂ t

	 ∂ ρ̄ ũiũk
∂xk

� � ∂ p̄
∂xi

	 ∂ τ̂ik
∂xk

(2.28)
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∂ ρ̄ ẽ
∂ t

	 ∂ 
 ρ̄ ẽ 	 p̄ � ũk
∂xk

� ∂  ũ jτ̂ jk 	 q̂k !
∂xk

(2.29)

where τ̂ik and q̂k are the total shear stress and total heat flux in turbulent flows,

τ̂ik � 
 µ 	 µt �'�%( ∂ui
∂xk

	 ∂uk
∂xi ) � 2

3
δik

∂u j

∂x j � (2.30)

q̂k � ( µ
Pr
	 µt

Prt ) ∂T
∂xk

(2.31)

The value of µt is determined by an appropriate turbulence model. The zero-equation

Baldwin-Lomax model [56] is applied in the current work and will be covered later in this

chapter.

2.3 Normalization of the Governing Equations

The Favre-averaged governing equations (2.22), (2.28) and (2.29) are normalized before

discretization. The hat, overbar and tilde are all dropped for clarity in the rest of the current

work.

The dimensionless flow variables in the governing equations are defined as the follow-

ing,

x * � x
L

y * � y
L

z * � z
L

u * � u
U∞

v * � v
U∞

w * � w
U∞

ρ * � ρ
ρ∞

µ * � µ
µ∞

t * � t
L � U∞

T * � T
T∞

p * � p
ρ∞U2

∞
e * � e

U2
∞

where the superscript asterisk denotes dimensionless variable, the free stream conditions
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are denoted by ∞, L is the reference length used in the Reynolds number ReL,

ReL � ρ∞U∞L
µ∞

(2.32)

Based on Eq. (2.25), the dimensionless turbulent viscosity µ *t is defined as,

µ *t � µt

ρ∞U∞L
(2.33)

Substitute the above normal variables into Eqs. (2.22), (2.28), (2.29), (2.30) and (2.26).

After simplification, the normalized governing equations are written as the following,

∂ρ *
∂ t * 	 ∂ρ � u * j

∂x * j � 0 (2.34)

∂ρ * u *i
∂ t * 	 ∂ρ * u *i u *k

∂x *k � � ∂ p *
∂x *i 	 1

ReL

∂τ *ik
∂x *k (2.35)

∂ρ * e *
∂ t * 	 ∂ 
 ρ * e * 	 p * � u *k

∂x *k � 1
ReL

∂  u * jτ *jk 	 q *k !
∂x *k (2.36)

τ *ik � 
 µ *+	 µ *t ReL � ��� ∂u *i
∂x *k 	 ∂u *k

∂x *i � � 2
3

δik

∂u * j
∂x * j � (2.37)

q * j � 1
 γ � 1 � M2
∞
( µ *

Pr
	 ReL

µ *t
Prt ) ∂T *

∂x * j (2.38)

where M∞ is the reference Mach number,

M∞ � U∞� γRT∞
(2.39)

which does not need to be the precise free stream Mach number.

The perfect gas equation of state is re-written in the dimensionless form as,

T * � γM2
∞ p *

ρ * (2.40)
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The dimensionless total energy per unit mass e * is related with the dimensionless tempera-

ture T * and velocity u * , v * , w * as,

e * � 1
γ 
 γ � 1 � M2

∞
T *�	 1

2

�
u * 2 	 v * 2 	 w * 2 � (2.41)

The dimensionless pressure p * is related with the dimensionless density ρ * , energy e * and

velocity u * , v * , w * as,

p * � 
 γ � 1 �-, ρ * e * � 1
2

ρ * � u * 2 	 v * 2 	 w * 2 �. (2.42)

The dimensionless speed of sound c * is calculated as the following,

c * 2 � T
 γ � 1 � M *∞ (2.43)

Drop the superscript asterisk, the vector form of the normalized governing equations

are,

∂U
∂ t

	 ∂E
∂x

	 ∂F
∂y

	 ∂G
∂ z � ∂R

∂x
	 ∂S

∂y
	 ∂T

∂ z
	 D (2.44)

where U is the conservative variable vector, D is an additional source term used later for

the moving grid system or the k � ω turbulence model. E, F, G and R, S, T are the inviscid

and viscous flux vectors in x, y and z direction respectively.

U �
/00000000001

ρ

ρu

ρv

ρw

ρe

2433333333335 (2.45)
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E �
/00000000001

ρu

ρu2 	 p

ρuv

ρuw
 ρe 	 p � u
2 33333333335 � F �

/00000000001
ρv

ρuv

ρv2 	 p

ρvw
 ρe 	 p � v
2 33333333335 � G �

/00000000001
ρw

ρuw

ρvw

ρw2 	 p
 ρe 	 p � w
2 33333333335 (2.46)

R �
/00000000001

0

τxx

τxy

τxz

ukτxk
� qx

2433333333335 � S �
/00000000001

0

τxy

τyy

τyz

ukτyk
� qy

2433333333335 � T �
/00000000001

0

τxz

τyz

τzz

ukτzk
� qz

2433333333335 (2.47)

The repeated index k stands for the Einstein summation over x, y and z. The Reynolds

number ReL is absorbed into the stress τ and heat flux q as,

τik � ( µ
ReL

	 µt ) �6( ∂ui
∂xk

	 ∂uk
∂xi ) � 2

3
δik

∂u j

∂x j � (2.48)

q j � 1
 γ � 1 � M2
∞
( µ

ReLPr
	 µt

Prt ) ∂T
∂x j

(2.49)

2.4 Governing Equations in Generalized Coordinates

To apply Eqs. (2.44) in computation domain with more complicated geometry, they are

further transformed from the Cartesian coordinates 
 x � y � z � to the generalized coordinates
 ξ � η � ζ � as shown in Fig. 2.1 . The mesh is assumed stationary in the computation domain.

The grid is only moving in the physical domain if moving grid is activated. The relation

between the two coordinate systems is as the following,

τ � t � ξ � ξ 
 t � x � y � z �%� η � η 
 t � x � y � z �%� ζ � ζ 
 t � x � y � z � (2.50)
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Figure 2.1: Coordinates transformation

The temporal and spatial derivatives in the physical domain are connected with those in the

computational domains as,

∂
∂ t � ∂

∂τ
	 ξt

∂
∂ξ

	 ηt
∂

∂η
	 ζt

∂
ζ

(2.51)

∂
∂xi

� ξxi

∂
∂ξ

	 ηxi

∂
∂η

	 ζxi

∂
∂ζ

(2.52)

where the index i � 1 � 2 � 3 stands for the direction of x, y and z respectively.

Using these relations, the governing equations are transformed from the physical do-

main to the computational domain as the following [115],

∂U
�

∂ t
	 ∂E

�
∂ξ

	 ∂F
�

∂η
	 ∂G

�
∂ζ � ∂R

�
∂ξ

	 ∂S
�

∂η
	 ∂T

�
∂ζ

	 D
�

(2.53)

where

U
� � 1

J
U (2.54)

E
� � 1

J

 ξtU 	 Eξx 	 Fξy 	 Gξz � (2.55)

F
� � 1

J

 ηtU 	 Eηx 	 Fηy 	 Gηz � (2.56)
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G
� � 1

J

 ζtU 	 Eζx 	 Fζy 	 Gζz � (2.57)

R
� � 1

J

 Rξx 	 Sξy 	 Tξz � (2.58)

S
� � 1

J

 Rηx 	 Sηy 	 Tηz � (2.59)

T
� � 1

J

 Rζx 	 Sζy 	 Tζz � (2.60)

D
� � 1

J
D (2.61)

In the above equations,

ξx � J  yη zζ
� yζ zη ! � ξy � J  xζ zη � xη zζ ! � ξz � J  xη yζ

� xζ yη ! (2.62)

ηx � J  yζ zξ
� yξ zζ ! � ηy � J  xξ zζ

� xζ zξ ! � ηz � J  xζ yξ
� xξ yζ ! (2.63)

ζx � J  yξ zη � yη zξ ! � ζy � J  xη zξ
� xξ zη ! � ζz � J  xξ yη � xη yξ ! (2.64)

ξt � � 
 xτξx 	 yτ ξy 	 zτ ξz �
ηt � � 
 xτηx 	 yτ ηy 	 zτηz � (2.65)

ζt � � 
 xτζx 	 yτζy 	 zτζz �
J is the coordinates transformation Jacobian,

J � ∂ 
 ξ � η � ζ �
∂ 
 x � y � z � �8777777777

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

777777777� 1

xζ  yη zζ
� yζ zη ! � xη  yξ zζ

� yζ zξ ! 	 xζ  yξ zη � yη zξ ! (2.66)
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Figure 2.2: Control volume

2.5 Governing Equations in Integral Forms

In the current work, a finite volume method is used to discretize the governing equations.

The governing equations are further transformed from the differential forms to their integral

form.

As shown in Fig. 2.2 , integrate the Eqs. (2.53) in the generalized coordinates over a

control volume ∆Ω , which has a volume of ∆ξ ∆η∆ζ .

" ∆Ω
, ∂U

�
∂ t

	 ∂E
�

∂ξ
	 ∂F

�
∂η

	 ∂G
�

∂ζ
. dξ dηdζ � " ∆Ω

, ∂R
�

∂ξ
	 ∂S

�
∂η

	 ∂T
�

∂ζ
	 D

� . dξ dηdζ

(2.67)

The control volume ∆Ω defined in the computational domain has a corresponding vol-

ume of ∆V � ∆x∆y∆z in the physical domain.

Let ∆ξ � ∆η � ∆ζ � 1,

∆V � J ( x � y � z
ξ � η � ζ ) ∆ξ ∆η∆ζ � ∆ξ ∆η∆ζ � J ( ξ � η � ζ

x � y � z ) � ∆Ω
J � 1

J
(2.68)
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Finally, the governing equations are discretized into an integral form as,

∆V
∆t

�
Un � 1 � Un � 	 ( E

i � 1
2

� E
i � 1

2 ) 	 ( F
j � 1

2

� F
j � 1

2 ) 	 ( G
k � 1

2

� G
k � 1

2 )� ( R
i � 1

2

� R
i � 1

2 ) 	 ( S
j � 1

2

� S
j � 1

2 ) 	 ( T
k � 1

2

� T
k � 1

2 ) 	 D � ∆V (2.69)

where i 9 1
2 , j 9 1

2 , k 9 1
2 refer to the right and left inter faces of the control volume at 
 i � j � k �

in ξ , η and ζ directions. n and n 	 1 are two sequential time steps. E, F, G and R, S, T are

the inviscid and viscid fluxes on the control volume inter surfaces in each direction. They

have the same forms as E
�
, F
�
, G
�
, R
�
, S
�
, T
�
when ∆ξ � ∆η � ∆ζ � 1.

U �
/00000000001

ρ

ρu

ρv

ρw

ρe

2433333333335 (2.70)

E �
/00000000001

ρU

ρuU 	 lx p

ρvU 	 ly p

ρwU 	 lz p
 ρe 	 p � U
2 33333333335 � F �

/00000000001
ρV

ρuV 	 mx p

ρvV 	 my p

ρwV 	 mz p
 ρe 	 p � V
2 33333333335 � G �

/00000000001
ρW

ρuW 	 nx p

ρvW 	 ny p

ρwW 	 nz p
 ρe 	 p � W
2 33333333335 (2.71)

R �
/00000000001

0

lkτxk

lkτyk

lkτzk

lkβk

2 33333333335 � S �
/00000000001

0

mkτxk

mkτyk

mkτzk

mkβk

2 33333333335 � T �
/00000000001

0

nkτxk

nkτyk

nkτzk

nkβk

2 33333333335 (2.72)

where
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βk � uiτki
� qk (2.73)

In equations above, U , V and W are the contravariant velocities in ξ , η and ζ directions,

U � lt 	 lxu 	 lyv 	 lzw (2.74)

V � mt 	 mxu 	 myv 	 mzw (2.75)

W � nt 	 nxu 	 nyv 	 nzw (2.76)

where l � m � n are the normal vectors on ξ � η � ζ surfaces with their magnitudes equal to the

elemental surface area and pointing to the directions of increasing ξ � η � ζ .

l �;: ξ
J

dηdζ � m �;: η
J

dξ dζ � n �<: ζ
J

dξ dη (2.77)

lt � mt � nt stand for the grid moving velocities and are defined as

lt � ξt

J
dηdζ � mt � ηt

J
dξ dζ � nt � ζt

J
dξ dη (2.78)

When the grid is stationary, lt � mt � zt � 0.

Since ∆ξ � ∆η � ∆ζ � 1 in the current discretization, Eqs.(2.77) and (2.78) are written

as the following in the solver,

l � : ξ
J
� m � : η

J
� n � : ζ

J
(2.79)

lt � ξt

J
� mt � ηt

J
� nt � ζt

J
(2.80)

It is shown from Eq. (2.69) that the governing equations for stationary grid system

and moving grid system have the same mathematical formulation. It is straightforward to



34

transfer the code from a stationary grid system to a moving grid system by simply including

the grid moving velocity in the contravariant velocity components.

2.6 Geometric Conservation Law

It was pointed out by Thomas et al. [116] that due to the mixed temporal and spatial deriva-

tives after discretization, an additional term appears, which theoretically equals to zero but

numerically still remains. Consequently numerical error could be introduced in the dis-

cretized form of the equations of the flow motion if this term is neglected. In order to

reduce or avoid this error, the geometric conservation law needs to be enforced. In other

words, the following additional term should be added to the right-hand side of the govern-

ing equations as a source term as shown in Eqs. (2.44) and (2.69),

D � U � ∂J � 1

∂ t
	 ( ξt

J ) ξ
	  ηt

J ! η
	 ( ζt

J ) ζ � (2.81)

As has been observed, the overall performance of this numerical supplement is benefi-

cial with very little CPU time cost.

2.7 Baldwin-Lomax Turbulence Model

To achieve high CPU efficiency, the Baldwin-Lomax turbulence model is employed in

the current work for its simplicity and robustness. The Baldwin-Lomax model has been

successfully applied to 2D and 3D subsonic, transonic steady and unsteady flows [14, 63,

117, 118].

The classic algebraic Baldwin-Lomax model [56] is a two-layer model.

At inner layer,

µt = i � ρl2 >ω > (2.82)



35

where the mixing length is determined by,

l � ky , 1 � exp ( � y
�

A
� ) . (2.83)

and ω is the local vorticity, y and y
�

are the dimensional and dimensionless distance to

the wall.

At the outer layer,

µt = o � KCcpρFwakeFkleb (2.84)

Fwake � min
�
ymaxFmax � Cwakeymaxu2

diff � Fmax
� (2.85)

Fkleb � � 1 	 5 � 5 ( Ckleby
ymax ) 6 � � 1

(2.86)

In the above formulations, constants take the following values, k=0.4, A
�

=26, Cwake=0.25,

Ckleb=0.3, Ccp=1.6 and K=0.0168.

The quantities udiff, Fmax and ymax are determined by the velocity profile following a

line normal to the wall. Fmax and ymax are the maximum value and the corresponding

distance of function Fy,

Fy � y >ω > , 1 � exp ( � y
�

A
� ) . (2.87)

udiff �  6? u2 	 v2 	 w2 ! max
�  @? u2 	 v2 	 w2 ! min

(2.88)

Finally the turbulent viscosity distribution across the boundary layer is determined by

µt � min  µt = i � µt = o ! (2.89)
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that is, µt is set to µt = i from the wall to a location where µt = i exceeds µt = o and µt is set to

µt = o beyond this location.

In the present work, the Baldwin-Lomax turbulent model is implemented for 3D flows

and wake flows as the following. In 3D computation, there could be more than one surface

treated as walls in the computation domain. At each grid point, the turbulent viscosity

µt is first computed relative to each wall respectively using the above method. Then the

distances to each wall are compared and the turbulent viscosity value based on the closest

wall is chosen for the turbulent viscosity on the grid point. This method is applied in both

the interior region and the corner regions of the computation domain. In the wake region,

the exponential part is set to zero in Eq. (2.83) and Eq. (2.87). The second part of Eq. (2.88)

is set to be zero outside of the wake region.



Chapter 3

The Upwind Schemes

The new efficient and accurate upwind schemes, Zha CUSP schemes, are developed to

compute the inviscid inter surface fluxes on the control volume. Two other popular upwind

schemes, the Roe scheme is also presented in this chapter for comparison. These schemes

are applied in the present work for numerical simulation. The Zha CUSP schemes belong

to E-CUSP (Convective upwind and split pressure) schemes. They use scalar dissipation,

which is more efficient in CPU usage. The Roe scheme uses matrix dissipation. The Zha

CUSP schemes strictly follow the characteristic directions of the disturbance propagation,

which may improve the stability and robustness of computation.

3.1 Characteristics Basis

The Zha CUSP schemes and the Roe scheme covered in this chapter are both based on the

characteristics of the hyperbolic Euler equations.

Take the ξ direction inviscid flux E in moving grid system for example. The Jacobian

matrix of E in Eq. (2.69) is defined as,

37
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A � ∂E
∂U �ABBBBBBBBBBC

0 lx ly lz 0� uU 	D
 γ � 1 � lxq U 	E
 2 � γ � lxu lyu � 
 γ � 1 � lxv lzu � 
 γ � 1 � lxw 
 γ � 1 � lx� vU 	E
 γ � 1 � lyq lxv � 
 γ � 1 � lyu U 	E
 2 � γ � lyv lzv � 
 γ � 1 � lyw 
 γ � 1 � ly� wU 	E
 γ � 1 � lzq lxw � 
 γ � 1 � lzu lyw � 
 γ � 1 � lzv U 	E
 2 � γ � lzw 
 γ � 1 � lz
a51 a52 a53 a54 γU

FGGGGGGGGGGH
(3.1)

where

a51 � � γUe 	 2qU 
 γ � 1 � (3.2)

a52 � � 
 γ � 1 � uU 	 lx I γe � 
 γ � 1 � q J (3.3)

a53 � � 
 γ � 1 � vU 	 ly I γe � 
 γ � 1 � q J (3.4)

a54 � � 
 γ � 1 � wU 	 lz I γe � 
 γ � 1 � q J (3.5)

q � 1
2

�
u2 	 v2 	 w2 � (3.6)

The eigenvalues of matrix A are

λ1 � U 	 C (3.7)

λ2 � U � C (3.8)

λ3 = 4 = 5 � U (3.9)
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where C is the contravariant speed of sound and is determined by the speed of sound c by ,

C � c K l2
x 	 l2

y 	 l2
z (3.10)

Then A can be split into

A � RΛL (3.11)

where Λ is the eigenvalue matrix,

Λ �
/00000000001

U 	 C

U � C 0

U

0 U

U

2 33333333335 (3.12)

R and L are the right and left eigenvector matrices,

L �
ABBBBBBBBBBBBC

q � cÛ
γ � 1

� u 	 cl̂x
γ � 1

� v 	 cl̂y
γ � 1

� w 	 cl̂z
γ � 1

1

q 	 cÛ
γ � 1

� u � cl̂x
γ � 1

� v � cl̂y
γ � 1

� w � cl̂z
γ � 1

1� V̂ m̂x m̂y m̂z 0� Ŵ n̂x n̂y n̂z 0

q � h � u � v � w 1

FGGGGGGGGGGGGH (3.13)

R �
ABBBBBBBBBBBBC

1
2h

1
2h

0 0 � 1
h

u 	 cl̂x
2h

u � cl̂x
2h

m̂x n̂x � u
h

v 	 cl̂y
2h

v � cl̂y
2h

m̂y n̂y � v
h

w 	 cl̂z
2h

w � cl̂z
2h

m̂z n̂z � w
h

cÛ 	 γe � 
 γ � 1 � q
2h

� cÛ 	 γe � 
 γ � 1 � q
2h

V̂ Ŵ � q
h

F GGGGGGGGGGGGH (3.14)
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where the static enthalpy h is calculated as,

h � c2

γ � 1 � T
 γ � 1 � M2
∞

(3.15)

l̂ is the unit vector normal to ξ surface pointing to the direction where ξ increases,

l̂ � l> l > (3.16)

m̂ � n̂ and l̂ are mutually orthogonal unit vectors.

Û , V̂ and Ŵ are determined by,

Û � V � l̂ (3.17)

V̂ � V � m̂ (3.18)

Ŵ � V � n̂ (3.19)

3.2 CUSP Schemes

The CUSP schemes split the inviscid flux into a convective part and a pressure part. Accord-

ing to the splitting method, there are two types of CUSP schemes. The H-CUSP schemes

have the total enthalpy in their convective part and the E-CUSP schemes have the total

energy in their convective part. The H-CUSP schemes may have the advantages to better

conserve the total enthalpy for steady state flows. However, from the characteristic theory

point of view, the E-CUSP schemes are more consistent with the disturbance propagation

directions and their stability and robustness may be improved.

Take ξ direction as example, the E-CUSP scheme splits the inviscid flux E on interface

i 9 1
2 into convective vector Ec and wave (pressure) vector Ep to represent the velocity and

pressure wave characteristics [110].

Based on Eqs. (3.1), (3.11) and (3.12),
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E � R

/00000000001
U 	 C

U � C 0

U

0 U

U

2433333333335 L � U
� R

/00000000001
U

U 0

U

0 U

U

2433333333335 L � U 	 R

/00000000001
C � C 0

0

0 0

0

2433333333335 L � U
� Ec 	 Ep (3.20)

where U is the contravariant velocity in ξ direction.

The convective and pressure vectors of the E-CUSP schemes are then split as the fol-

lowing,

Ec �
/00000000001

ρU

ρuU

ρvU

ρwU

ρeU

2433333333335 � Ep �
/00000000001

0

lx p

ly p

lz p

pŪ

2433333333335 (3.21)

It should be noted that U in the convective vector is the contravariant velocity computed

using the main flow velocity relative to the grid moving velocity as Eq. (2.74). In the

pressure vector, Ū is the contravariant computed using the absolute main flow velocity

only,
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Ū � U � lt� ulx 	 vly 	 wlx (3.22)

For H-CUSP schemes, the inviscid flux is split as the following,

Ec �
/00000000001

ρU

ρuU

ρvU

ρwU

ρHU

2 33333333335 � Ep �
/00000000001

0

lx p

ly p

lz p

0

2 33333333335 (3.23)

where the total enthalpy H instead of total energy e is included in its convective vector Ec.

Liou’s AUSM
�

scheme [104] belongs to H-CUSP schemes.

The total enthalpy H is defined as,

H � e 	 p
ρ

(3.24)

The H-CUSP schemes are not fully consistent with characteristics direction analysis

[110]. The Zha CUSP schemes belong to the E-CUSP schemes. They split the inviscid

surface flux following the characteristics directions.

3.3 Zha CUSP Schemes

In this section, two Zha CUSP schemes are presented. Modification is made in the Zha CUSP2

scheme to remove the temperature oscillation near the wall in the original Zha CUSP

scheme when the grid is skewed.
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3.3.1 Zha CUSP scheme

The Zha CUSP scheme is an E-CUSP scheme and is based on the convective and pressure

vectors given in Eqs. (3.20) and (3.21). In subsonic regime, the convective vector Ec is

hence treated in an upwind manner. The eigenvalues of Ep are (C � � C � 0 � 0 � 0). So the

pressure vector Ep is averaged with the weight of the eigenvalues U 9 C from both the

upwind and the downwind directions.

The interface flux E 1
2

is evaluated as the following.

In subsonic regime, >U >
1
2 L C1

2
,

E 1
2
� 1

2
,M
 ρU � 1

2

 qc

L 	 qc
R � � > ρU >

1
2

 qc

R
� qc

L � .
	
ABBBBBBBBBBBC

0N �
plxN �
plyN �
plz

1
2 p , Ū 	 C̄1

2

.
F GGGGGGGGGGGH

L

	
ABBBBBBBBBBBC

0N � plxN � plyN � plz
1
2 p , Ū � C̄1

2

.
F GGGGGGGGGGGH

R

(3.25)

where,

qc �
ABBBBBBBBBBC

1

u

v

w

e

FGGGGGGGGGGH (3.26)

The subscripts L and R represent the left and right hand sides of the interface. The

interface speed of sound C 1
2

is computed as,

C1
2
� 1

2

 CL 	 CR � (3.27)
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where CL and CR are the speed of sound determined from the left and the right sides of the

interface.

The contravariant speed of sound C̄ in the pressure vector is consistent with Ū . It is

computed based on C as the following,

C̄ � C � lt (3.28)

The use of Ū and C̄ instead of U and C in the pressure vector to take into account of

the grid speed so that the flux will transit from subsonic to supersonic smoothly. When the

grid is stationary, lt � 0, C̄ � C, Ū � U .

The mass flux on the interface is introduced as the following,
 ρU � 1
2
� �

ρLU
�
L 	 ρRU �R � (3.29)

where,

U
�
L � C1

2 O ML 	 >ML
>

2
	 αL , 14 
 ML 	 1 � 2 � ( ML 	 >ML

>
2 ) .QP (3.30)

U �R � C1
2 O MR

� >MR
>

2
	 αR , � 1

4

 MR

� 1 � 2 � ( MR
� >MR

>
2 ) .RP (3.31)

αL � 2 
 p � ρ � L
 p � ρ � L 	E
 p � ρ � R (3.32)

αR � 2 
 p � ρ � R
 p � ρ � L 	D
 p � ρ � R (3.33)

ML � UL
C1

2

(3.34)

MR � UR
C1

2

(3.35)

The coefficient
N

is defined as,N �
L � 1

4

 ML 	 1 � 2 
 2 � ML �%	 αML

�
M2

L
� 1 � 2

(3.36)



45N �R � 1
4

 MR

� 1 � 2 
 2 	 MR � � αMR

�
M2

R
� 1 � 2

(3.37)

where

α � 3
16

In supersonic regime, >U >
1
2 S C1

2
, E 1

2
is simply computed using upwind variables.

When U1
2 T C1

2
,

E 1
2
� EL (3.38)

When U1
2 L � C1

2
,

E 1
2
� ER (3.39)

3.3.2 Zha CUSP2 scheme

The above formulations are for the original Zha CUSP scheme, which can capture sharp

shock profile and exact contact surface with low diffusion [110]. However, the scheme

is found to have temperature oscillations near the wall when the grid is skewed. The

Zha CUSP scheme is hence modified to the following Zha CUSP2 scheme [112].

In Zha CUSP2 scheme, the total enthalpy instead of the static pressure is used to com-

pute the numerical dissipation coefficients αL and αR for the energy equation,

αL � 2 
 H � ρ � L
 H � ρ � L 	E
 H � ρ � R (3.40)

αR � 2 
 H � ρ � R
 H � ρ � L 	D
 H � ρ � R (3.41)

It needs to be emphasized that, when computing the fluxes of continuity and momentum

equations, the formulations of αL and αR given in Eq. (3.32) and Eq. (3.33) must be used.

Eq.(3.40) and (3.41) are only for the energy equation.

Compared with the results of the original Zha CUSP scheme, the temperature oscilla-

tions are removed by using Eq.(3.40) and (3.41) and the wall temperature is more precisely
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predicted by this modified scheme even if a coarse grid is used [112].

3.4 Roe Scheme

Roe scheme suggested his approximate Riemann solver in 1D form in 1981 [95]. The

scheme is extended to 3D as the following for moving grid systems [119].

Take ξ direction for example, ,

E
i � 1

2
� 1

2
$ EL 	 ER 	 ULlt = L 	 URlt = R 	 R̃ > Λ̃ > L̃ 
 UL

� UR � & (3.42)

where i 	 1
2 stands for the right surface of cell i, subscripts L and R indicate variables

computed from the left and right hand sides of this surface. The tilde stands for the Roe

average. lt = L and lt = R are calculated based on the reconstructed grid velocity ξt = L and ξt = R,

lt = L � ξt = L
J

dηdζ � lR � ξt = R
J

dηdζ (3.43)

Compared with Eq. (3.11), R̃, Λ̃ and L̃ have the same formulation with R, Λ and L, but

the variables are replaced by their corresponding Roe-averaged counterparts. For example,

77 Λ̃ 77 is defined as,

> Λ̃ U
ABBBBBBBBBBC
> Ũ 	 C̃ > > Ũ � C̃ > 0> Ũ >

0 > Ũ > > Ũ >
F GGGGGGGGGGH (3.44)

The Roe-averaged variables are evaluated at interface i 	 1
2 as,

ρ̃ � ? ρiρi � 1 (3.45)

ũ � ui � ρi 	 ui � 1 � ρi � 1� ρi 	 � ρi � 1
(3.46)
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ṽ � vi � ρi 	 vi � 1 � ρi � 1� ρi 	 � ρi � 1
(3.47)

w̃ � wi � ρi 	 wi � 1 � ρi � 1� ρi 	 � ρi � 1
(3.48)

H̃ � Hi � ρi 	 Hi � 1 � ρi � 1� ρi 	 � ρi � 1
(3.49)

The Roe average of the grid moving velocity is similar to the flow variable average,

ξ̃t � ξt = i � ρi 	 ξt = i � 1 � ρi � 1� ρi 	 � ρi � 1
(3.50)

It can be proved that the eigenvector matrix L and R are exactly the same as the one

without moving grid. The only difference between the moving grid system and the sta-

tionary grid system is that, for the moving grid system, the contravariant velocity in the

eigenvalues contains the grid velocity as given in Eq. (2.74). It is hence straightforward to

extend the code from a stationary grid system to the moving grid system using Roe scheme.

3.5 van Leer Scheme

The van Leer scheme is proposed in 1982 [97]. When written in Cartesian coordinates, the

x direction inviscid flux E at the inter surface is split as,

E � E
� 	 E � (3.51)

In supersonic region, >Mx
> T 1,

E � E
� � E � � 0 when Mx T 1 (3.52)

E � E � � E
� � 0 when Mx L 1 (3.53)
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In subsonic region, >Mx
> L 1,

E V �
/0000000000001

f Vm
f Vm 
 γ � 1 � u 9 2a

γ
f Vm v

f Vm w

f Vm W I 
 γ � 1 � u 9 2a J 2
2 
 γ2 � 1 � 	 1

2

�
v2 	 w2 �YX

2 3333333333335 (3.54)

where

f Vm � 9 ρa , 1
2

 Mx 9 1 � . 2

(3.55)

Mx is the local Mach number based on u.

The van Leer scheme is transformed to generalized coordinates in reference [92].

3.6 Numerical Dissipation

The low numerical dissipation at stagnation is important to accurately resolve wall bound-

ary layers. As shown in Eq. (3.23), the H-CUSP scheme has all the numerical dissipation

terms vanishing when the velocity approaches zero, which hence yields low numerical dis-

sipation for wall boundary layers. For the Zha CUSP schemes, as shown in Eq. (3.25),

almost all of the numerical dissipation terms vanish with the velocity approaching zero,

except one term in the energy equation due to the pressure splitting.

Assuming U � 0, the numerical dissipation vector of the Zha CUSP schemes at stagna-

tion is:
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DZha-CUSP � � C1
2

2

ABBBBBBBBBBC
0

0

0

0

δ p

F GGGGGGGGGGH (3.56)

where

δ p � pR
� pL (3.57)

The numerical dissipation of the Roe scheme at stagnation is:

DRoe � � C̃1
2

2 
 γ � 1 �
ABBBBBBBBBBC

 γ � 1 �Z� C̃2

1
2
δ p

0

0

0

δ p

F GGGGGGGGGGH (3.58)

When Eqs. (3.56) and (3.58) are compared, it can be seen that the numerical dissipation

of the Zha CUSP schemes for the continuity equation vanishes at U � 0 while the Roe

scheme has the non-vanishing dissipation. For the energy equation, the two schemes have

equivalent dissipation. For perfect gas with the γ � 1 � 4, the coefficient of the Roe scheme

energy dissipation term is 2.5 times larger than that of the Zha CUSP schemes.

In conclusion, even though there is one non-vanishing numerical dissipation term in

the energy equation for the Zha CUSP schemes, the overall numerical dissipation of the

Zha CUSP schemes is not greater than that of the Roe scheme. The Roe scheme is proved

to be accurate to resolve wall boundary layers [96]. It is hence expected that the Zha CUSP

schemes should also have sufficiently low dissipation to accurately resolve wall boundary

layers. This is indeed the case shown by the numerical experiment for a flat plate boundary

layer in later chapters.



Chapter 4

Numerical Methods

In this chapter, the numerical methods used to solve the three dimensional compressible

time-dependent Navier-Stokes equations in the current work are described in details. The

governing equations are discretized using a control volume method. The discretized linear

equations are solved by the implicit line Gauss-Seidel iteration method. Third order accu-

racy is achieved on the spatial differencing for inviscid fluxes by the MUSCL differencing

approach. The second order central differencing is used for viscous fluxes. The final spatial

accuracy is second order. The time marching is made the second order of accuracy with

the dual time stepping scheme. The local time stepping technique is used to speed up the

convergence. The solver is made parallel by implementing the message passing interface

(MPI) protocol. Finally the solver is able to study the fluid-structural interaction problems

by applying the moving grid system.

4.1 Implicit Discretization

In the current work, the finite volume discretization is obtained with a cell-center method.

The meshes for the computation domain are established using algebraic method or partial

differential equation method. Then the grid points are placed in the geometric centers of

these mesh cells. The flow variables are defined and computed at these cell center points.

50
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The current work only makes use of structured quadrilateral control volumes or cells. The

conservation laws are applied on each cell and the governing equations are discretized in

the integral forms as Eq. (2.69) on page 32. The inviscid and viscous fluxes are evaluated

on the cell surfaces. The temporal term and the source term are evaluated at the cell center

for each cell.

To implement implicit time marching on the integral equations, Eq. (2.69) is first re-

written into the following form.

∆V
∆t

�
Un � 1 � Un � 	[( E

i � 1
2

� E
i � 1

2 ) n � 1 	\( F
j � 1

2

� F
j � 1

2 ) n � 1 	\( G
k � 1

2

� G
k � 1

2 ) n � 1

� ( R
i � 1

2

� R
i � 1

2 ) n � 1 	 ( S
j � 1

2

� S
j � 1

2 ) n � 1 	 ( T
k � 1

2

� T
k � 1

2 ) n � 1 	 Dn � 1 � ∆V (4.1)

where n and n 	 1 are two sequential time levels, which have a time interval of ∆t.

The surface fluxes E, F, G and R, S, T at the control volume left ( � 1
2 ) and right ( 	 1

2 )

inter surface are computed based on the flow variables at the current cell and its neighboring

cells. The inviscid fluxes are evaluated following the characteristic directions by using

appropriate upwind schemes. In the present work, the employed upwind schemes include

the popular Roe scheme, van Leer scheme and the new low diffusion upwind scheme, Zha

CUSP scheme, which are given Chapter 3.

Take ξ direction as the example, the inviscid flux on control volume inter surface i 	 1
2

is computed with its left (L) and right (R) side fluxes. The formulation of the inter surface

flux differs between the Roe scheme and the van Leer scheme.

In the Roe scheme,

E
i � 1

2
� 1

2 ] EL 	 ER 	 Ã 
 UL
� UR �_^ i � 1

2
(4.2)

Since the flux E is a first degree homogeneous function of conservative variable vector U,

the surface inviscid fluxes EL and ER on time level n and n 	 1 can be expressed as,
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En � 1
L � En

L 	 ( ∂E
∂U ) n

L
∆Un � 1

L� En
L 	 AL

i � 1
2
∆Un � 1

L (4.3)

En � 1
R � En

R 	\( ∂E
∂U ) n

R
∆Un � 1

R� En
R 	 AR

i � 1
2
∆Un � 1

R (4.4)

The Jacobian matrices are evaluated at time level n.

Ã 
 UL
� UR � n � 1 � Ã 
 UL

� UR � n 	DÀn � ∆Un � 1
L

� ∆Un � 1
R

� (4.5)

Use first order accuracy,

∆Un � 1
L � ∆Un � 1

i � ∆Un � 1
R � ∆Un � 1

i � 1 (4.6)

Therefore,

En � 1
i � 1

2

� En � 1
i � 1

2
�  En

i � 1
2

� En
i � 1

2
! 	 1

2
( AR

i � 1
2

� Ã
i � 1

2 ) ∆Un � 1
i � 1 	 1

2
( AL

i � 1
2
	 Ã

i � 1
2 ) ∆Un � 1

i� 1
2
( AR

i � 1
2

� Ã
i � 1

2 ) ∆Un � 1
i

� 1
2
( AR

i � 1
2
	 Ã

i � 1
2 ) ∆Un � 1

i � 1�  En
i � 1

2

� En
i � 1

2
! 	 ÂR

i � 1
2
∆Un � 1

i � 1 	 ÂL
i � 1

2
∆Un � 1

i
� ÂR

i � 1
2
∆Un � 1

i
� ÂL

i � 1
2
∆Un � 1

i � 1 (4.7)

where

ÂR
i V 1

2
� 1

2
( AR

i V 1
2

� Ã
i V 1

2 ) (4.8)

ÂL
i V 1

2
� 1

2
( AL

i V 1
2
	 Ã

i V 1
2 ) (4.9)
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However, for the van Leer scheme,

E
i � 1

2
� EL 	 ER � E

�
i � 1

2
	 E �

i � 1
2

(4.10)

En � 1
L � En

L 	 ( ∂E
�

∂U ) n

L
∆Un � 1

L� En
L 	 JL

i � 1
2
∆Un � 1

i (4.11)

En � 1
R � En

R 	[( ∂E �
∂U ) n

R
∆Un � 1

R� En
R 	 JR

i � 1
2
∆Un � 1

i � 1 (4.12)

Therefore,

En � 1
i � 1

2

� En � 1
i � 1

2�  En
i � 1

2

� En
i � 1

2
! 	 JR

i � 1
2
∆Un � 1

i � 1 	 JL
i � 1

2
∆Un � 1

i
� JR

i � 1
2
∆Un � 1

i
� JL

i � 1
2
∆Un � 1

i � 1 (4.13)

If let

ÂL
i V 1

2
� JL

i V 1
2
� ÂR

i V 1
2
� JR

i V 1
2

(4.14)

Eq. (4.13) will have the same form as Eq. (4.7).

The viscous flux R at time level n 	 1 on the right hand side is implicitly discretized by

“freezing” the viscosity and evaluating the cross-derivative terms at time level n,

Rn � 1
i � 1

2
� Rn

i � 1
2
	 ∂R

i � 1
2

∂Ui � 1
∆Un � 1

i � 1 	 ∂R
i � 1

2

∂Ui
∆Un � 1

i� Rn
i � 1

2
	 LR

i � 1
2
∆Un � 1

i � 1 	 LL
i � 1

2
∆Un � 1

i (4.15)
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Therefore,

Rn � 1
i � 1

2

� Rn � 1
i � 1

2
�
Rn

i � 1
2

� Rn
i � 1

2
	 LR

i � 1
2
∆Un � 1

i � 1 	a LL
i � 1

2

� LR
i � 1

2
! ∆Un � 1

i
� LL

i � 1
2
∆Un � 1

i � 1 (4.16)

The other two directions are treated similarly. In ξ direction, the formulations for F

and S have coefficients B̂R = L
j V 1

2

, MR = L
j V 1

2

. In ζ direction, the formulations for G and T have

coefficients ĈR = L
k V 1

2

and NR = L
k V 1

2

. The exact formulation of ÂR = L
i V 1

2

, B̂R = L
j V 1

2

, ĈR = L
k V 1

2

depends on the

inviscid flux discretization scheme.

The source term is implicitly discretized as,

Dn � 1
i = j = k � Dn

i = j = k 	 ∂Di = j = k
∂Ui = j = k ∆Un � 1

i = j = k (4.17)

Substitute Eqs. (4.7), (4.16), (4.17) and other similar terms on η and ζ directions into

the implicit integral governing equation (4.1). Move all the terms with ∆Un � 1 to the left

hand side and the rest to the right hand side, the integrated governing equations are written

in implicit form as,
 I � ∆D � ∆Un � 1
i = j = k 	 A

�
∆Un � 1

i � 1 = j = k 	 A∆Un � 1
i = j = k 	 A � ∆Un � 1

i � 1 = j = k 	 B
�

∆Un � 1
i = j � 1 = k 	 B∆Un � 1

i = j = k	 B � ∆Un � 1
i = j � 1 = k 	 C

�
∆Un � 1

i = j = k � 1 	 C∆Un � 1
i = j = k 	 C � ∆Un � 1

i = j = k � 1 � RHSn (4.18)

where the coefficients A, A V , B, B V and C, C V are defined as,

A
� � ∆t

∆V
 ÂR

i � 1
2

� LR
i � 1

2
! (4.19)

A � ∆t
∆V

$  ÂL
i � 1

2

� LL
i � 1

2
! �  ÂR

i � 1
2

� LR
i � 1

2
! & (4.20)

A � � � ∆t
∆V

 ÂL
i � 1

2

� LL
i � 1

2
! (4.21)

B
� � ∆t

∆V
 B̂R

j � 1
2

� MR
j � 1

2
! (4.22)
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B � ∆t
∆V

$  B̂L
j � 1

2

� ML
j � 1

2
! �  B̂R

j � 1
2

� MR
j � 1

2
! & (4.23)

B � � � ∆t
∆V

 B̂L
j � 1

2

� ML
j � 1

2
! (4.24)

C
� � ∆t

∆V
 ĈR

k � 1
2

� NR
k � 1

2
! (4.25)

C � ∆t
∆V

$  ĈL
k � 1

2

� NL
k � 1

2
! �  ĈR

k � 1
2

� NR
k � 1

2
! & (4.26)

C � � � ∆t
∆V

 ĈL
k � 1

2

� NL
k � 1

2
! (4.27)

RHSn is the summation of all the terms on the right hand side (RHS) of the equation.

RHSn � ∆t
∆V b $  Rn

i � 1
2

� Rn
i � 1

2
! 	a Sn

j � 1
2

� Sn
j � 1

2
! 	a Tn

k � 1
2

� Tn
k � 1

2
! &� $  En

i � 1
2

� En
i � 1

2
! 	a Fn

j � 1
2

� Fn
j � 1

2
! 	a Gn

k � 1
2

� Gn
k � 1

2
! &dc 	 Dn � ∆t (4.28)

∆D is a term resulting from the source term,

∆D � ∆t �Y( ∂D
∂U ) n

i = j = k (4.29)

Eq. (4.18) also means that the first order accuracy is always used for the left hand

side (LHS), which has the advantage of diagonal dominance [92]. Since the accuracy of

the converged solution is controlled by the RHS, the first order LHS will not affect the

final solution. The diagonal dominance of the LHS matrix is the necessary and sufficient

conditions for Gauss-Seidel iteration to converge.

In the current work, when the implicit method is used for time marching, the LHS van

Leer coefficient matrices are used for all upwind schemes other than the Roe scheme.

4.2 Gauss-Seidel Line Iteration

Eq. (4.18) is the final implicitly discretized linear equation system for the Navier-Stokes

governing equations (2.44). This linear equation system is then solved by the Gauss-Seidel
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line iteration method. Eq. (4.18) is rearranged as the following,I 
 I � ∆D �@	 A 	 B 	 C J ∆Un � 1
i = j = k 	 A

�
∆Un � 1

i � 1 = j = k 	 A � ∆Un � 1
i � 1 = j = k 	 B

�
∆Un � 1

i = j � 1 = k	 B � ∆Un � 1
i = j � 1 = k 	 C

�
∆Un � 1

i = j = k � 1 	 C � ∆Un � 1
i = j = k � 1 � RHSn (4.30)

The Gauss-Seidel line iteration is applied on each direction (ξ , η , ζ ) respectively and is

swept forward and backward on each direction. Take η direction for example, the equation

form for Gauss-Seidel iteration following lines along η axis (ξ and ζ are constant) is

written as,

B � ∆Un � 1
i = j � 1 = k 	 B∆Un � 1

i = j = k 	 B
�

∆Un � 1
i = j � 1 = k � RHS

�
(4.31)

where

B � 
 I � ∆D �%	 A 	 B 	 C (4.32)

The terms in the neighboring cells in ξ and ζ directions are absorbed into RHSn to make

RHS
�
as the following,

RHS
� � RHSn � A

�
∆Un � 1

i � 1 = j = k � A � ∆Un � 1
i � 1 = j = k � C

�
∆Un � 1

i = j = k � 1
� C � ∆Un � 1

i = j = k � 1 (4.33)

When iterating through all η direction lines, the coefficients B V , B, A V , A, C V , C and

the right hand side RHSn are all evaluated based on the flow variables on the previous

time level n. However, the ∆Un � 1 vectors all use the most recent values whenever they are

calculated as required by Gauss-Seidel iteration. Same rules apply for the line iterations in

the other two directions.

In the steady state calculation or the iteration within each physical time step in the

unsteady calculation, the above Gauss-Seidel line iteration are repeated until the prescribed

convergence criteria is reached.
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Figure 4.1: MUSCL approach

4.3 MUSCL Differencing Approach

To achieve higher order schemes for the inter surface inviscid flux computation, the primi-

tive variables, the density ρ , the velocity V and the energy e are first extrapolated to the cell

interface as left and right values using the values on neighboring cells. The inviscid fluxes

are then reconstructed based on these extrapolated left and right primitive variables. The

MUSCL (monotone upstream-centered schemes for conservation laws) differencing ap-

proach suggested by van Leer [120] is applied to extrapolate the primitive variables [121].

As shown in Fig. 4.1 , for a cell with index of i, the left and right hand side reconstructed

variable u on its inter surface i 	 1
2 is computed as the following,

uL
i � 1

2
� ui 	 φ

4
, 
 1 � κ � ∆u

i � 1
2
	E
 1 	 κ � ∆u

i � 1
2

. (4.34)

uR
i � 1

2
� ui � 1

� φ
4
, 
 1 	 κ � ∆u

i � 1
2
	E
 1 � κ � ∆u

i � 3
2

. (4.35)

where

∆u
i � 1

2
� ui � 1

� ui � ∆u
i � 1

2
� ui

� ui � 1 (4.36)

When φ � 0, the first order interpolation is used for u. When φ � 1, the constant κ
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determines the order of accuracy of the MUSCL approach. For example,

κ �
����������� ����������
� 1 second order fully upwind scheme

0 second order Fromm’s method

1
3 third order upwind biased

1 central difference

(4.37)

Both the upwind scheme (κ=-1) and central difference (κ=1) are linear approximations

to the cell boundary values of u and both have the second order of accuracy. In the current

work, κ � 1
3 is used, therefore the third order of accuracy is achieved for spatial differencing

of the inviscid fluxes.

It should be mentioned that the third order accuracy is applied only in the interior cells.

For the first two layers of boundary cells, the left and right side values on the the control

volume surface use the center values of the left and right neighboring cells, which have the

first order accuracy. The MUSCL differencing is employed with the Minmod limiter [122]

and the limiter suggested by Anderson et. al [123].

4.4 Boundary Conditions

In the following chapters, numerical simulation is carried out for both transonic and high

subsonic systems with various boundary conditions, which include supersonic inlet, su-

personic outlet, subsonic inlet, subsonic outlet, wall surface, symmetric boundary, periodic

boundary. In the parallel computation cases, a two-layer domain partitioning boundary con-

dition is applied for the interface between two neighboring sub-domains. These boundary

conditions are indexed in the code as Table. 4.1 .

To apply these boundary conditions, additional cells are attached to the outside of the

domain boundary. There are two cell layers added for the periodic and the domain parti-

tioning boundaries. The coordinates and the variables in these additional cells are copied
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Table 4.1: Boundary condition indexes in the RANS3D solver

Index Boundary Condition Index Boundary Condition
1 Supersonic outlet 6 Subsonic inlet with velocity specified
2 Supersonic inlet 7 Domain partitioning boundary
3 Wall 8 Symmetry boundary
5 Subsonic outlet 9 Subsonic inlet with stagnation variables specified

10 Periodic boundary

from other part of the domain or exchanged from the neighboring domains. For boundary

conditions other than the periodic and domain partitioning boundaries, the domain is at-

tached a single layer of phantom cells, where no coordinate information is required. The

variables in the phantom layer are computed based on the inner neighboring cells or are

specified based on different boundary conditions.

The numerical treatment of these boundary conditions are described as the following.

Supersonic inlet

At supersonic inlet, all the primitive variables including the density ρ , velocity V, energy

e are fixed as constants at the boundary. Other variables, for example the static pressure p,

static temperature T , are computed from the specified variables.

Supersonic outlet

At the supersonic outlet boundary, all waves are leaving the computation domain. There-

fore all the primitive variables (ρ , V and e) are extrapolated with zero gradient from their

inner counterparts,

ρb � ρi � Vb � Vi � eb � ei (4.38)

where the subscript b and i stand for the boundary at outlet and first inner cell close to

the boundary. The other derived flow variables are calculated based on these extrapolated
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primitive variables accordingly.

Subsonic inlet

At subsonic inlet boundary, four of the five waves enter the domain and one leaves the

domain. Therefore, there are 4 variables prescribed at the the boundary and 1 variable

extrapolated from the inner neighboring cell. In the current work, there are two types of

subsonic inlet boundary conditions employed in the code, based on the different variable

combinations for the prescribed and extrapolated variables.

1. Subsonic inlets with velocity specified

The 3 velocity components u, v and w and the density ρ are given as constant at the

subsonic inlet boundary. The extrapolated variable is the pressure p. All other flow

variables at the boundary are then calculated from these 5 variables.

2. Subsonic inlet with stagnation variables specified

In reality, at subsonic inlet boundary, the prescribed variables at the boundary are

usually total pressure pt , total temperature Tt and the two flow angles α and β instead

of the velocity and density. The total variables are easier for experiment measurement

and more common in engineering. In the current work, most of the subsonic inlet

boundaries are treated in this way. In the code, a velocity component is extrapolated

from the interior cells. The other variables are calculated based on these 5 variables.

For example, in x direction, when Pt � Tt � α � β are specified and u is extrapolated from

inner domain, the other normalized flow variables are calculated as the following. .

Velocity:

ub � ui � vb � ub tanα � wb � ub tanβ (4.39)

Temperature:

Tb � Tt
� 1

2

 γ � 1 � M2

∞
�
u2

b 	 v2
b 	 w2

b
� (4.40)
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Pressure:

pb � Pt , 1 	 γ � 1
2

M2
∞

Tb

�
u2

b 	 v2
b 	 w2

b
� . γ

γ e 1

(4.41)

Density:

ρb � γM2
∞ pb

Tb
(4.42)

Energy:

eb � 1
γ 
 γ � 1 � 1

M2
∞

Tb 	 1
2

�
u2

b 	 v2
b 	 w2

b
� (4.43)

Subsonic outlet

At the subsonic outlet boundary, four waves leave the domain and one wave enters the

domain. Hence, the static pressure p is specified for the wave entering the domain. Four

of the five primitive flow variables, u, v, w and ρ are extrapolated from the inner domain.

These five variables are then used to calculate other variables at the boundary.

Wall boundary

The wall surface boundary is treated as no-slip and adiabatic wall in the current work. The

velocity components in the phantom cells are determined with the no-slip condition. The

temperature is determined by the adiabatic condition.

When the boundary is stationary, the velocity on the wall is simply set as zero. This is

made possible by setting the phantom cell velocity to be the negative of the velocity at the

first interior cell velocity,

Vb � � Vi (4.44)

However, this method is only valid when the central differencing is applied on the boundary

for viscous fluxes. For inviscid fluxes the contravariant velocity on the boundary is set as

zero directly. For example, in the inviscid flux F, the contravariant velocity V is directly
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set to be zero on the wall surface and the flux on the wall surface is calculated as,

Fw �
/00000000001

0

mx p

my p

mz p

0

2433333333335 (4.45)

When the boundary is moving, the wall velocity is calculated based on the wall grid

point moving distance between two sequential time levels. This prescribed wall velocity is

enforced by extrapolating the velocity between the phantom and the neighboring interior

cells. For example in 2D cases,

ub � 2ẋw � ui � vb � 2ẏw � vi (4.46)

where ẋw � ẏw are the velocity components of moving wall boundary.

ẋw � xn � 1
w

� xn
w

∆t
� ẏw � yn � 1

w
� yn

w
∆t

(4.47)

The other two conditions to be imposed on the solid wall are the adiabatic wall condition

and the inviscid normal momentum equation [124]. For example at the η direction wall

boundary in 2D calculation,
∂T
∂η � 0 (4.48)

∂ p
∂η � � � ρ

η2
x 	 η2

y � �
ηxẍb 	 ηyÿb

� (4.49)

where ẍw and ÿw are the wall surface acceleration components.

ẍw � ẋn � 1
w

� ẋn
w

∆t
� ÿw � ẏn � 1

w
� yn

w
∆t

(4.50)
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Figure 4.2: Periodic boundary condition

When the boundary is stationary, Eq. (4.49) is simplified to the zero gradient form,

∂ p
∂η � 0 (4.51)

Symmetrical boundary

The velocity in the phantom cell is mirrored about the symmetrical boundary from its first

neighboring interior cell. The velocity components parallel to the boundary are extrapo-

lated with zero gradient. The normal velocity component is set as negative to its interior

counterpart. Other parameters, such as the density ρ and the energy e, the temperature T

and the pressure p are extrapolated with zero gradient.

Periodic boundary

On the periodical boundaries, the flow variable and the mesh coordinates are repeated peri-

odically in a certain direction. Fig. 4.2 shows one periodical boundary example in η direc-

tion. The flow variables and the mesh information on the additional cell layers ( j � n 	 1,

n 	 2) are copied directly from the corresponding first and second inner cells in the oppo-

site boundary ( j � 1 � 2). When calculating RHS in the integral governing equation (4.18),

the viscosity on the control volume surface is required and it is calculated as the average

viscosity between the neighboring grid points with the weight of their volume magnitudes.
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On the computation domain surface, the additional cells are real cells with real volumes.

Therefore, the mesh coordinate information is also copied from the corresponding interior

cells to the additional cells at the periodical boundary to compute the real volumes.

It should be noted that, because higher order differencing is used in the code, there are

two additional cell layers ( j � n 	 1, n 	 2 on top for example) attached on the boundary.

In this way the accuracy of the surface flux computation for the periodic boundary points is

kept the same as the inner points. When solving the discretized linear governing equations

on the lines with periodical boundary at their end points (for example the vertical lines in

Fig. 4.2), the periodic block triangular solver is used in the Gauss-Seidel line iteration.

Domain partitioning boundary

This boundary condition only exists in parallel computation. When the computation do-

main is split into several sub-domains, two neighboring sub-domains share the interface

boundary. Like the periodic boundary, there are two additional cell layers allocated for the

boundary. The flow variables and the mesh information are copied between the two neigh-

boring sub-domains. The implementation of the domain partitioning boundary is described

later in this chapter.

4.5 Local Time Stepping

When the governing equations are solved, the physical time step is expected to be as large

as possible to save the computation CPU time. However, in order to achieve the numerical

stability, the time step is restricted by the numerical method and the flow field characteris-

tics. The time step in the code is determined by the following,

∆t � CFL
∆Vi jk

max  >U > 	 >Cξ
> � >V > 	 >Cη

> � >W > 	 >Cζ
> ! (4.52)
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where CFL is the Courant-Friedrichs-Levy condition number, ∆Vi jk is the cell volume at

location 
 i � j � k � , U , V and W are the contravariant velocities at the cell center in ξ , η and

ζ directions, Cξ , Cη and Cζ are the corresponding contravariant speeds of sound.

Cξ � c K l2
x 	 l2

y 	 l2
z � Cη � c K m2

x 	 m2
y 	 m2

z � Cζ � c K n2
x 	 n2

y 	 n2
z (4.53)

It is shown in Eq. (4.52) that the time step size is proportional to the volume magnitude

of the mesh cell. In the viscous flow cases, the mesh is highly stretched in the near wall

regions and the areas around the shock wave to resolve the high gradient. In these regions,

the mesh size is several orders of magnitude smaller than the regions far away from the

wall and shock wave. Hence, a large range of time step scales exist, which may vary in

several orders of magnitude. The time step is very small in the regions with very fine mesh

compared with that in the free stream.

If the time accuracy is required during the integrations, for example in explicit time

marching, the time step should be uniform across the whole computation domain. Thus

the minimum time step which is determined by the smallest volume should be used. The

constrain of the uniform time step brings high computation cost. However, if only the

steady state solution is required, the local time stepping method suggested by Li [73] can be

used to accelerate the convergence of the iteration. The iteration at each point is advanced

using the local maximum possible time step computed by Eq. (4.52). This method is used

in the present work for convergence acceleration.

4.6 Dual Time Stepping

In the unsteady simulation, the physical time step in Eq. (2.44) should be uniform on all

mesh cells in the computation domain. The local time stepping is not applicable any more.

The computation cost will be very high if explicit scheme is used. The implicit scheme

can have much larger time step. However, when parallel computation is used, it is difficult

to preserve the time accuracy across the domain partitioning boundaries. The dual time
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stepping method suggested by Jameson [76] is then employed to resolve this problem.

For dual time stepping, a pseudo temporal term ∂U
∂τ is added to the left side of the

governing equation(2.44). The new governing equations with the pseudo term are hence

rewritten in the Cartesian coordinates as,

∂U
∂τ

	 ∂U
∂ t � � ∂ 
 E � R �

∂x
� ∂ 
 F � S �

∂y
� ∂ 
 G � T �

∂ z
	 D (4.54)

The physical time marching is still conducted with the physical time t as discussed

above. However, for each physical time step ∆t, the time marching is not finished until the

iteration over the pseudo time τ is converged, that is,

∂U
∂τ � � ∂ 
 E � R �

∂x
� ∂ 
 F � S �

∂y
� ∂ 
 G � T �

∂ z
	 D � ∂U

∂ t � 0 (4.55)

Then, the new equation (4.54) is reverted to the original governing equation (2.44). Because

the pseudo time term vanishes in the final converged solution in each physical time step,

the accuracy of the physical time marching is not affected. Since the pseudo time iteration

has no accuracy requirement, the convergence acceleration techniques, such as the local

time stepping can still be used. The physical time step can be very large since the implicit

scheme is used.

The dual time stepping is implemented in the present work as the following.

Eq.(4.54) is integrated on the control volume as,

∂U
∂τ

	 ∂U
∂ t � � 1

∆V f S
RF � ds 	 D (4.56)

where s is the surface area vector, RF is the net flux vector,

RF � 
 E � R � i 	E
 F � S � j 	D
 G � T � k (4.57)

Let

RHS � � 1
∆V f S

RFds 	 D (4.58)
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The ∂U
∂ t is discretized using the second order 3 point backward differencing. Use the first

order discretization for ∂U
∂τ on two pseudo time steps (m and m 	 1 � on the same physical

time step n 	 1, the implicit discretization of the governing equations (4.54) is written as,

Un � 1 =m � 1 � Un � 1 =m
∆τ

	 3Un � 1 =m � 1 � 4Un 	 Un � 1

2∆t � RHSn � 1 =m � 1 (4.59)

Let

∆Un � 1 =m � 1 � Un � 1 =m � 1 � Un � 1 =m (4.60)

∆RHSn � 1 =m � 1 � RHSn � 1 =m � 1 � RHSn � 1 =m (4.61)

Therefore

∆Un � 1 =m � 1

∆τ
	 3Un � 1 =m 	 3∆Un � 1 =m � 1 � 4Un 	 Un � 1

2∆t � RHSn � 1 =m 	 ∆RHSn � 1 =m � 1 (4.62)

The final formulation for the dual time stepping is,

�6( 1
∆τ

	 1 � 5
∆t ) I � ( ∂RHS

∂U ) n � 1 =m � ∆Un � 1 =m � 1� RHSn � 1 =m � 3Un � 1 =m � 4Un 	 Un � 1

2∆t
(4.63)

When the iteration is converged within one physical time step, ∆Un � 1 =m � 1 g 0.

The implementation of Eq. (4.63) is based on Eq. (4.18). If divide Eq. (4.18) and

then compare it with Eq. (4.63), the only difference for the LHS is the temporal term. 1
∆t in

Eq. (4.18) is replaced by 1
∆τ 	 1 h 5

∆t in Eq. (4.63). On the RHS, an extra term, � 3Un i 1 jm � 4Un � Un e 1

2∆t

is added to Eq. (4.18).
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4.7 Parallel Computation

In turbomachinery, the periodic boundary condition is usually used for steady state simula-

tion and the computation is carried out in a single passage. However, when the periodicity

is lost, such as in the mistuned rotor vibration, the full annulus rotor calculation is required.

Even though the multi-passage simulation can be conducted with a single processor by go-

ing through each blade sequentially, it would be too CPU expensive. Another disadvantage

of this method is that, the flows in all passages are highly coupled in reality, solving these

passages sequentially may be difficult to get converged solutions.

A better way for the turbomachinery unsteady simulation is using parallel computer,

which has multiple CPUs installed on a single machine with shared memory. Most of par-

allel computation algorithms apply the approach of “divide and conquer”. The computation

job is split into multiple sub-jobs and these sub-jobs can be processed by multiple proces-

sors simultaneously. However, this method has its own disadvantages. The hardware will

be too costly especially when a large number of processors are needed to be installed on

a single machine. Besides, the original single passage code will be updated based on the

specific hardware and operating system configuration. This is expensive and inconvenient.

The final code will become poor in portability.

The distributed computation with the MPI standard makes the parallel computation of

the turbomachinery more economic and portable [90]. Each subdomain is computed by a

processor. The two topologically neighboring subdomains communicate with each other

using the MPI protocol. These two processors do not have to be neighbors physically in

the computer system. The location for a specific process is maintained by the MPI routines

for the highest efficiency. Currently, there are several popular implementations of the MPI

standard. In current work, the parallel simulation is implemented using the LAM/MPI,

which is a high quality implementation of the MPI Standard. It provides high performance

on a variety of platforms.

A sample 2D parallel computation algorithm is shown in Fig. 4.3 . These two subdo-
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Figure 4.3: Sketch of MPI data exchange

mains are decomposed in η direction. The two domain partitioning boundaries are identi-

cal in reality. Two rows of additional dummy cells are added below the upper domain and

above the lower domain. This is needed by the higher order differencing schemes used to

discretize the governing equations. The data in the dummy cells are received from the cor-

responding cells directed as the arrows on the left side, that is, from upper domain to lower

domain, 
 1 g jl 	 1 � , 
 2 g jl 	 2 � and from lower domain to upper domain 
 jl g 0 � ,
 jl � 1 g � 1 � . The information exchanged includes the primitive flow variables ρ , V, e

and the coordinates x, y, z.

The decomposition can be extended to 3D cases as shown in Fig. 4.4 . In stead of

passing 2 lines of data as in Fig. 4.3, two planes of data are exchanged in the horizontal and

vertical directions as the arrows indicate.

When the above data exchange is implemented for an explicit time marching method

across the partitioning boundary, the parallel computation is as efficient as the single pro-

cessor computation. The variable on each cell center is updated based on the variables

on the neighboring cells from the last time step. On the partitioning boundary cells, the

variable update is the same as the inner cells. The variables on the additional cell layers

are exchanged from the neighboring domain right after the inner cells are updated. The

boundary additional cells and the inner cells are updated synchronously and no efficiency
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Figure 4.4: 3D MPI data exchange

is lost because of parallel computation.

However, when the implicit method is used for time marching, the computation effi-

ciency and the time marching accuracy will be affected by the existence of the partitioning

boundary. Different from the explicit method, in implicit solver, the variables on the neigh-

boring cells are related to each other and are updated synchronously by matrix inversion.

In the current study, the line Gauss-Seidel iteration is carried out on single lines in the

computation domain. For example, in η direction, the variables ∆U on a single line ξ � i

and ζ � k is solved based on Eq. (4.31). When written in a matrix form, the equation is
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expressed as,/000000000000000000001
B̄1 B

�
1

>
B �2 B̄2 B

�
2

> 0
. . . >
B �m B̄m

> B
�
m�k� �k� �l� �k� 	 �l� �k� �l�

B �m � 1
> B̄m � 1 B

�
m � 1

0 > . . .> B �n B̄n

24333333333333333333335

/000000000000000000001
∆U1

∆U2
...

∆Um�k�
∆Um � 1

...

∆U3

24333333333333333333335
�
/000000000000000000001

RHS m1
RHS m2

...

RHS mm�k�
RHS mm � 1

...

RHS mn

24333333333333333333335
(4.64)

If the η line is split into 2 sections as (0 g m) and (m 	 1 g n) because of the η direction

domain decomposition, Eq. (4.64) will be split into two sub-matrices following the dashed

lines, /00000001 B̄1 B
�
1

B �2 B̄2 B
�
2

. . .

B �m B̄m

2433333335
/00000001 ∆U1

∆U2
...

∆Um

2433333335 �
/00000001 RHS m1

RHS m2
...

RHS mm
2433333335 (4.65)

/00000001 B̄m � 1 B
�
m � 1

B �m � 2 B̄m � 2 B
�
m � 2
. . .

B �n B̄n

2433333335
/00000001 ∆Um � 1

∆Um � 2
...

∆Un

2433333335 �
/00000001 RHS mm � 1

RHS mm � 2
...

RHS mn
2433333335 (4.66)

The variables ∆U1
g ∆Um and ∆Um � 1

g ∆Un are correspondingly solved on two pro-

cessors by conducting the matrix inversion on the above two sub-matrices. Comparing

Eqs. (4.65) and (4.66) with the original Eq. (4.64) for the single processor computation, B
�
m

on the first section and B �m � 1 on the second matrix are discarded in the two sub-matrices.

They are the coefficients computed based on the variables from the neighboring sections. In

the present work, these two coefficients are treated as zero in the implicit solver for the sub-
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domain computations. The variables are updated independently on the two sub-domains.

This LHS treatment does not preserve the exact matrices as in the single processor com-

putation, which will negatively affect the convergence efficiency in steady state calculation

and the time accuracy on the boundary cell variables in unsteady simulation. However,

the computation experience indicates that the slow down of the convergence due to the

non-exact LHS treatment is small, in particular when the mesh size is large. For unsteady

time accurate calculation, the dual time stepping technique treats the partitioning boundary

similar to the steady state calculation. The non-exact treatment of LHS occurs within the

pseudo time step, which will not affect the time accuracy when the unsteady calculation is

converged within each physical time step.

There are two important parameters to measure the parallel computation performance.

The first is speedup, which is the serial execution time divided by the parallel execution

time, given a fixed problem size and number of processors,

speedup � time used for the job on a single CPU
time used for the job on multiple CPUs

(4.67)

A perfect speedup equals the number of processors. The second parameter is scalabil-

ity, which refers to how speedup changes as the problem size and number of processors

increases. An ideal scalability is a linear increase of the speedup with the number of pro-

cessors. However, when a large number of processors are used the scalability will become

poor. The communication time will increase significantly with the increased processor

number. If an implicit time marching is used, the iteration convergence will be influenced

by the existence of the domain partitioning boundary. The domain decomposition should

be carefully designed to minimize the influence.

In turbomachinery computation, the most straightforward domain decomposition is to

follow the flow path and divide a blade row into subdomain passages. Then each passage

is assigned to a single processor. In dual time stepping scheme, the flow variables of the

domain partitioning boundary cells are exchanged across the boundaries after each pseudo

time step. The mesh information of the boundary cells is exchanged every physical time
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step in the prescribed vibration and every pseudo time step in the vibration determined by

the fully coupled fluid-structural interaction.

4.8 Moving Grid System

4.8.1 Algebraic mesh and elliptic mesh

The meshes in this work are generated algebraically or elliptically. In algebraic meshes,

the mesh points are first distributed along the boundaries, such as walls, inlet, outlet etc.

following a given stretch factor. Then the corresponding points on the boundaries are con-

nected with lines. The cost of the elliptic mesh is much higher. Like the algebraic mesh,

the grid points are first distributed along the given boundaries. Then the elliptic equation

is solved to obtain the inner mesh. The grid lines in the elliptic mesh are more smooth

compared with the algebraic mesh and hence have higher quality.

When the viscous boundary layer or wake need to be resolved, the mesh at these regions

needs to have good orthogonality to assure the accuracy of the estimation of the turbulent

viscosity, which will has a big influence on the flowfield results.

The algebraic mesh is simpler and more appropriate for cases within boundaries which

are topologically simple, for example the flat plate boundary flow and the inlet diffuser

flow. In the cylinder and airfoil cases with far field boundaries, the O-type meshes are also

generated algebraically.

When the boundaries are complicated, the elliptic mesh is needed to keep the orthogo-

nality in wall regions. For the cascade airfoil, the O-type mesh become inappropriate when

the inlet and outlet are required to be extended. This brings difficulties for mesh generation.

In the current work, the H-type elliptic meshes are used for the oscillating and stationary

cascade flow simulations.
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Figure 4.5: Multi-layer moving grid regeneration

4.8.2 Moving grid generation

When the moving grid system is simulated, the mesh will be regenerated every time when

the solid wall boundary is moved. A straightforward method for the mesh update is to

regenerate the mesh every time. However, several disadvantages are associated with this

method. The mesh orthogonality in the wall region may not be maintained if the wall is

distorted too much and the grid points distribution is kept unchanged on the wall bound-

aries. The cost of the mesh regeneration will be high for the elliptic equation solver. In

the present work, the forced oscillating airfoil and the cascade use different moving grid

generation models.

For the airfoil with far field boundary, the mesh is regenerated with a multi-region

model. The computation mesh is split into an inner region and an outer region as shown

in Fig. 4.5 . When the airfoil moves to a new position, the mesh in the inner region will

move with the airfoil rigidly without deformation. Also kept unchanged is the outer far

field boundary. The mesh in the outer region is however interpolated based on the far field

boundary and the inner region boundary. The orthogonality is preserved in the inner layer.

In the cascade case, the H-type mesh is generated with a single-region model. As



75

blade surface

blade surface

x

y

ξη

periodical
boundary

periodical
boundary

Figure 4.6: Sample cascade H-mesh

shown in Fig. 4.6 , the mesh is highly twisted in the computation domain because of its

large stagger angle. The mesh is generated by solving the elliptic equations every time the

wall surface moves.

4.9 The Fluid-Structural Interaction Procedure

The current solver is developed to calculate the unsteady flow with stationary or moving

boundaries. As discussed above, the unsteady simulation is carried out using the dual

time stepping scheme. The inner pseudo time iteration is conducted using the implicit line

Gauss-Seidel iteration, accelerated by the local time step technique. The fluid-structural

interaction procedure is outlined in Fig. 4.7 . On each physical time step, the computation

starts from the previous flow field at time step n. When the grid is moving, the computation

boundary is first deformed following the prescribed vibration. The mesh is then updated

using the appropriate model mentioned in the previous section. The calculation is iterated

with the pseudo time and is converged when the maximum residual is reached to the given
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Figure 4.7: Unsteady time marching procedure
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convergence criteria (ε). Then the time marching for the current physical time step is

completed and the updated mesh and flow field are saved. A new physical time marching

step is repeated following the same procedure. The unsteady time marching is carried out

until the specified maximum physical time step number is reached.



Chapter 5

Validation Calculation

In this chapter, the code is validated using several 2D cases for the turbulence modeling,

parallel computation scalability, unsteady calculation capability and moving grid system.

The turbulence modeling is validated with a subsonic flat plate boundary layer flow and

an inlet-diffuser transonic flow. The parallel computation speedup scalability is validated

with the flat plate boundary flow. The unsteady calculation capability is tested with the

inlet-diffuser transonic flow. The moving grid system is tested on an forced oscillating

airfoil.

5.1 Turbulence Model Validation

The first case is a subsonic flat plate turbulent boundary layer flow. The computation results

are compared with the law of the wall. In the turbulent boundary layer on a flat plate

without pressure gradient, the law of the wall is valid for the viscous layer, the buffer zone

and the fully turbulent portions [125]. In terms of the non-dimensional velocity u
�

and the

non-dimensional distance y
�

, the law of the wall is written as the following,

u
� � ���� ��� y

�
when y

� L 2~8 
 viscous sublayer �
1
κ lny

� 	 B ~50 L y
� L ~500 
 fully turbulent zone � (5.1)
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where the non-dimensional u
�

and y
�

are defined as,

u
� � u

uτ
(5.2)

y
� � y

uτ
ν

(5.3)

u is the velocity component parallel to the wall surface, y is the distance to the wall, ν is

dynamic viscosity, uτ is the friction velocity given by

uτ �on τw

ρ
(5.4)

τw is the wall shear stress.

The von Karman constants in Eq. (5.1) typically have values of κ � 0.4~0.41, B � 5.0~5.5.

In the following comparison, κ= 0.4 and B � 5.5.

The computation mesh is distributed as 80 points uniformly allocated along the wall

surface and 60 points allocated normal to the wall surface with a stretch factor of 1.1. The

y
�

of the first cell center to the wall is kept under 0.2. The Reynolds number is 4 � 106

based on the plate length. The inlet Mach number is 0.5. The flow is subsonic at inlet and

outlet. The upper boundary is zero gradient. The governing equation is solved implicitly

with the Gauss-Seidel line relaxation method. The discretization scheme is the Zha CUSP2

scheme. The CFL number is set to be 100. The computed result is compared very well

with the law of the wall as shown in Fig. 5.1 .

The second validation case for the Baldwin-Lomax turbulence model performance is

a transonic inlet-diffuser flow, which was tested in wind tunnel [126]. The test section is

designed to obtain a 2D flow condition. The flow enters the inlet diffuser under subsonic

condition and accelerates to supersonic after the throat. By adjusting the back pressure

level at outlet, different shock wave structures are obtained. The inlet diffuser has a height

of ht � 4.4 cm at the throat and a total length of 12.6ht . The inlet height is hin � 1 � 4ht .

Fig. 5.2 is the mesh used for the calculation. The Roe scheme is used for the inviscid flux
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Figure 5.1: Computed velocity profile of the flat plate boundary layer flow compared with
the law of the wall

Figure 5.2: The transonic inlet-diffuser 2D mesh
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Figure 5.3: Mach number contours of the transonic inlet-diffuser with back pressure 0.83pt

calculation. The mesh size is 100 � 60. The mesh is uniformly distributed horizontally,

except that a refinement is applied in the throat region, where a normal shock interacts

with the turbulent boundary layer. The mesh is clustered close to upper and lower walls

vertically with a stretch factor of 1.1. The maximum y
�

of the first cell center close to the

wall is below 3. The Reynolds number is 4.34 � 105 based on the throat height. Uniform

total pressure and total temperature are fixed at the inlet. The inlet Mach number in the

computation result is 0.45. At the outlet, the static pressure is fixed as pout � pt=0.83. A

CFL of 5 is used in the Gauss-Seidel iterations.

Figure 5.3 shows the computed Mach number contours, where the shock wave is clearly

captured. The upper wall static pressure distribution is compared with the experimental

data in Fig. 5.4 . A very good agreement is achieved.

5.2 Parallel Computation Speedup Scalability

When applying the MPI protocol for parallel computation, ideally the computation wall

clock time will be reduced linearly with the number of processors employed in the com-

putation. However the performance of the parallel computation is influenced by the imple-

mentation details. The data communication between subdomains will take CPU time, and

the communication time increases with the exchanging data size. The domain decomposi-

tion will affect the convergence rate of the implicit Gauss-Seidel iteration. The inversion

of a block tri-diagonal matrix along a grid line in single processor computation is split

into multiple short grid lines due to the domain partitioning. At the domain partitioning

boundary, the information from the neighboring grid lines is simply treated as zero. This
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Figure 5.4: Upper wall pressure distribution of the transonic inlet-diffuser with back pres-
sure 0.83pt

treatment is approximate and will affect the convergence rate compared with the single grid

line solution. However, the accuracy of the converged results will not be affected. The ex-

tra cost can be minimized by optimizing the size and the structure of the interface message

and the topology of the decomposition.

The parallel computation performance is tested on the flat plate boundary layer flow.

Similar to the calculation above, a 80 � 60 rectangular mesh is applied. The inlet Mach

number is 0.5. However, the calculation is carried out for a laminar flow condition. The

Reynolds number based on the plate length is 4 � 104. The solutions are achieved with 1,

2, 4, 6 and 10 processors respectively. The Roe scheme is used for the inviscid flux com-

putation. There are up to 5 machines (two CPUs on each machine) used in the calculation

simultaneously. These machines are identical in hard ware configuration and operating

system (Red Hat Linux 7.1). The solution is considered as converged when the maximum

residual is below 1 � 10 � 9. The iteration history and the final wall clock time are recorded

for comparison. After each time marching iteration, the flow variables are exchanged be-
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tween the two neighboring sub-domains. To minimize the MPI communication time, the

computation domain is divided almost evenly in horizontal direction (x) only. Therefore,

the communication only needed to be carried out in one direction and the interface vertical

width of 60 cells is smaller than the horizontal width of 80 cells. The data on the partition-

ing boundary to be exchanged are not non-contiguously distributed in memory. They are

arranged as a single block of derived date type and transfered in a single communication

operation, which saves the communication time.

The computations with 1, 2, 4, 6, 10 processors converge in 1743, 1746, 1753, 1760,

1775 steps respectively. The domain decomposition increases the total iteration number

slightly. Fig. 5.5 plots the iteration histories for all computation cases. The iteration history

curves have similar shapes. The total computation wall clock time decreases dramatically

with the increase of the processor number (np). The parallel computation speedup scala-

bility is shown in Fig. 5.6 , where the computation speedup calculated based on Eq. (4.67)

is plotted versus the number of processors. The speedup increases almost linearly with

the number of processors. The discrepancy between the CFD results and the ideal linear-
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Figure 5.6: Parallel computation speedup scalability in boundary layer flow problem

ity indicates the time used for message communication also increases with the number of

processors.

5.3 Unsteady Capability

The unsteady simulation capability of the solver is validated using two 2D cases. The first

is the self-excited shock wave oscillation in the transonic inlet diffuser. The second is a

forced oscillating airfoil. The flow interacts with the airfoil structure movement of forced

vibration.

5.3.1 Transonic inlet-diffuser shock wave oscillation

The frequency characteristics of the shock wave oscillation in the same transonic inlet-

diffuser discussed above is experimentally measured in reference [126]. The shock wave

oscillation results from the interaction between the turbulent boundary layer and the shock

wave.
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Figure 5.7: Transonic inlet-diffuser Mach contours with back pressure 0.72pt

The mesh is similar to that in Fig. 5.2. The mesh size in the unsteady simulation is

130(x) � 60(y). The near wall maximum y
�

is below 3. The Roe scheme is applied to eval-

uate the control volume inter surface flux. The total pressure pt , total temperature Tt and

flow angle α are specified at the inlet. The no-slip adiabatic boundary condition is applied

at top and bottom walls. The back pressure level is set as pout � pt =0.72 as the experiment.

The Reynolds number based on the throat height is 4.3896 � 105. The static pressure is

fixed at the outlet. The physical time step is set as 0.28272 ms, which is about 7% of the

shock oscillation cycle. The Gauss-Seidel iteration is swept forward and backward within

each physical time step with a CFL of 5.0 for the pseudo time step. The converged solution

for each physical time step is obtained after 50 pseudo time step iterations. The obtained

inlet Mach number is 0.458.

As shown in Fig. 5.7 . The shock wave is clearly captured. Compared with the shock

wave structure in Fig. 5.3, the shock in the case of pout � pt � 0 � 72 is more downstream.

The flow is separated after the shock, which brings high unsteadiness to the flowfield. The

location of the shock wave moves back and forth downstream of the throat region. The flow

field parameters, including the shock wave location and static pressure, vary periodically

with time in the region after the shock wave. Fig. 5.8 shows the pressure oscillation history

on the upper wall at outlet. More clear frequency information is revealed using the Fourier

transform technique. The static pressure frequency spectrum is shown in Fig. 5.9 on the

left compared with experiment measurement based on the shock wave motion [126] on the

right. The computed frequency spectrum peak is at 250 Hz, which is close to the experiment

measurement frequency, 200 Hz. However, the computation has multiple peaks while the

experiment only has one peak. The reason for the discrepancy between the computational
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and experimental results may be the inadequacy of the turbulence model, which will affect

the boundary layer thickness and hence the shock motion.

5.3.2 Forced oscillation of NACA 64A010 airfoil

In the second unsteady validation case, the flow around a forced pitching airfoil is cal-

culated. The airfoil is NACA 64A0101 and the experiment measurement is reported by

Davis [127]. In the experiment, the airfoil is forced in pitch about its quarter chord sinu-

soidally. The airfoil oscillation is defined by function of the time dependent variation of its

angle of attack,

α 
 t � � α0 	 αA sin 
 ωt � (5.5)

where α 
 t � is the time dependent angle of tack.α0 are αA are the mean and the amplitude

of the oscillating angle respectively, ω is the angular frequency which is directly related to

the reduced frequency

kc � ωC
2U∞

(5.6)

where C is the airfoil chord, and U∞ is the free-stream velocity.

An O-type mesh consisting of 280 � 65 cells is employed for calculation. When the

airfoil is oscillating, the moving grid system is dynamically generated based on a two-layer

model. The fine mesh zone or non-deforming part of the mesh is depicted in Fig. 5.10 .

This mesh layer oscillates with the airfoil surface. The outer layer of the mesh is linearly in-

terpolated between the fixed far field outer boundary and the outermost grid line on the fine

mesh zone every time the the airfoil oscillates to a new position. The smallest grid spacing

attached to the airfoil surface is about 8.0 � 10 � 6 chord in radial direction. To be consis-

tent with the experiment, the following primary parameters are employed in the unsteady

calculation: α0 = 0, αA � 1 � 01
�
, Reynolds number (based on chord), Re � 1 � 256 � 107,

free-stream Mach number, M∞ = 0.8, reduced frequency, kc � 0 � 202.

The inlet boundary is subsonic with velocity specified and the outlet is subsonic with

pressure specified. The computation begins with the stationary airfoil model with a dimen-
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Figure 5.10: O-type mesh around the NACA 64A010 airfoil

sionless time step ∆t = 0.1. The typical Mach contours at an arbitrary time is plotted in

Fig. 5.11 . There are two shock wave observed on the upper and lower surfaces of the

airfoil. They move back and forth during the airfoil oscillation. From the stationary airfoil

model, it can be easily switched to the forced pitching airfoil model. The experimental

results given by Davis [127] are reproduced using rectangle symbol in Figs. 5.12 and 5.13

. The computation result is also plotted using a solid line in the figures for comparison.

Fig. 5.12 plots the history of the computed lift coefficient varying with the angle of attack.

The computation agrees quite well with the experiment. Fig. 5.13 plots the history of the

computed moment coefficient varying with the angle of attack. The agreement of the mo-

ment coefficient is not as good as that of the lift coefficient. However, the agreement in the

current results is better than the recent result computed by McMullen et al. in 2002 [128].

The discrepancy between the computation and the experiment in the moment coefficient

may be caused by the inadequacy of the turbulence modeling, which may not predict the

surface friction accurately.
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Figure 5.11: Instantaneous Mach contours around the forced pitching NACA 64A010 air-
foil
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Figure 5.12: Comparison of computed lift coefficient with experimental data for the forced
pitching airfoil
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Chapter 6

Performance of Zha CUSP Schemes

The accuracy of the newly developed Zha CUSP schemes are compared with other popu-

lar upwind schemes including the Roe scheme, the Liou’s AUSM
�

scheme, the van Leer

scheme and the van Leer-Hänel scheme. The Zha CUSP schemes are tested in both 2D and

3D cases. These tests show that the new schemes are accurate, robust and efficient.

6.1 Zha CUSP Scheme in 2D Cases

The Zha CUSP scheme is tested in several 2D cases including a flat plate supersonic bound-

ary layer flow, a transonic nozzle flow with oblique shock waves and reflections and the

transonic inlet diffuser flow with shock wave-turbulent boundary layer interaction.

6.1.1 Wall boundary layer

To examine the numerical dissipation of the Zha CUSP scheme, a laminar supersonic

boundary layer on an adiabatic flat plate is calculated using first order accuracy. The in-

coming Mach number is 2.0. The Reynolds number based on the length of the flat plate is

40000. The Prandtl number of 1.0 is used in order to compare the numerical solutions with

the analytical solution. The baseline mesh size is 80 � 60 in the direction along the plate

and normal to the plate respectively.
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Figure 6.1: Computed velocity profiles of the laminar boundary layer using 1st order
schemes

Fig.6.1 is the comparison between the computed velocity profiles and the Blasius solu-

tion. The solutions of the Zha CUSP scheme, Roe scheme, and AUSM
�

scheme agree very

well with the analytical solution. The van Leer scheme significantly thickens the boundary

layer. The van Leer-Hänel scheme does not improve the velocity profile.

Fig.6.2 is the comparison between the computed temperature profiles and the Blasius

solution. Again, the Zha CUSP scheme, Roe scheme, and AUSM
�

scheme accurately pre-

dict the temperature profiles and the computed solutions basically go through the analytical

solution. Both the van Leer scheme and the van Leer-Hänel scheme significantly thicken

the thermal boundary layer similarly to the velocity profiles.

Table 6.1 shows the wall temperatures predicted by all the schemes using the baseline

mesh and refined mesh. The predicted temperature value by the van Leer scheme has a

large error. The van Leer- Hänel scheme does predict the wall temperature accurately even

though the overall profile is nearly as poor as that predicted by the van Leer scheme. The
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Figure 6.2: Computed temperature profiles of the laminar boundary layer using 1st order
schemes

Table 6.1: Computed dimensionless wall temperature using first order schemes with the
baseline mesh and refined mesh

Scheme Twall, Mesh 80 � 60 Twall, Mesh 160 � 120
Blasius analytical solution 1.8000 1.8000

Zha CUSP 1.8025 1.8018
Roe scheme 1.8002 1.7996

Liou’s AUSM
�

1.8000 1.8000
van Leer 1.8328 1.8333

van Leer-Hänel 1.7970 1.7996
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Figure 6.3: Computed Mach number contours using the Zha CUSP scheme

Zha CUSP scheme, Roe scheme and AUSM
�

scheme all predict the temperature accu-

rately.

All the results mentioned above are converged based on mesh size. The wall tempera-

tures using the refined mesh of 160 � 120 are also given in table 6.1. There is little difference

between the results of the baseline mesh and the refined mesh. The refined mesh does not

help to reduce the large numerical dissipation of the van Leer scheme. When the 2nd order

schemes are used, both the velocity and temperature profiles of the van Leer scheme and

the van Leer- Hänel are improved (not shown).

6.1.2 Transonic converging-diverging nozzle

To examine the performance of the Zha CUSP scheme in two-dimensional flow and the

capability to capture the shock waves which do not align with the mesh lines, a transonic

converging-diverging nozzle is calculated as inviscid flow. The nozzle was designed and

tested at NASA and was named as Nozzle A1 [129]. Third order accuracy of MUSCL

type differencing is used to evaluate the inviscid flux with the Minmod limiter. Fig. 6.3 is

the computed Mach number contour using the Zha CUSP scheme with the mesh size of
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Figure 6.4: Adiabatic Mach number distribution computed on the wall surface of the nozzle

175 � 80. In the axial direction, there are 140 mesh points distributed downstream of the

nozzle throat, where the oblique shock waves are located. The grid is clustered near the

wall. For clarity, the coarsened mesh is drawn as the background with the Mach contours

to show the relative orientation of the shock waves and the mesh lines. The nozzle is

symmetric about the centerline. Hence only the upper half of the nozzle is calculated. The

upper boundary uses the slip wall boundary condition and the lower boundary of the center

line uses the symmetric boundary condition.

As indicated by the wall surface isentropic Mach number distribution shown in Fig. 6.4

, the flow is subsonic at the inlet with the Mach number about 0.22 and is accelerated

to sonic at the throat, and then reaches supersonic with Mach number about 1.35 at the

exit. Fig. 6.3 shows that right after throat, an expansion fan emanates from the wall and

accelerates the flow to reach the peak Mach number about 1.5. Due to the sharp throat

turning, an oblique shock appears immediately downstream of the expansion fan to turn

the flow to axial direction. The two oblique shocks intersect at the centerline, go through
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Figure 6.5: Computed Mach number contours using the Zha CUSP scheme with back
pressure 0.83pt

each other, hit the wall on the other side, and then reflect from the wall. Such shock patten

is repeated to the exit and the shock strength is weakened with the flow going downstream.

As shown in Fig. 6.4, the isentropic Mach number distributions predicted by the Zha CUSP

scheme and the Roe scheme agree fairly well with the experiment. The Zha CUSP scheme

and the Roe scheme have virtually indistinguishable results.

The mesh refinement study indicates that the mesh resolution in the axial direction does

not affect the shock resolution much. The axial mesh size of 280 downstream of the throat

yields only slightly better shock resolution than the size of 70. However, the mesh size in

the vertical direction dramatically changes the shock resolution. The mesh size of 80 in the

vertical direction yields much better resolution than the mesh size of 50. This can be seen

from the isentropic Mach number in Fig. 6.3, which shows that the mesh size of 175 � 80

generates much sharper profiles than those of the mesh 175 � 50 for the first and second

shock reflections.

For this transonic nozzle with the mesh size 175 � 80 on an Intel Xeon 1.7 GHz proces-

sor, the CPU time per time step per node to calculate the inviscid flux is 2.5871 � 10 � 6s for

the Zha CUSP scheme, which is about 25% of the CPU time of 1.0284 � 10 � 5s used for the

Roe scheme. This is a significant CPU time reduction.

6.1.3 Transonic inlet-diffuser

To examine the performance of the Zha CUSP scheme for shock wave-turbulent boundary

layer interaction, a transonic inlet-diffuser [126] is calculated as shown by the Mach num-

ber contours in Fig. 6.5 , which has the exit back pressure pout � pt � 0 � 83. The Reynolds
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Figure 6.6: Static pressure distribution computed on the upper surface of the inlet-diffuser
with back pressure 0.83pt

number based on the throat height is 4 � 38 � 105. The Baldwin-Lomax algebraic turbulence

model [56] is used. The third order accurate MUSCL-type differencing with the Minmod

limiter is used for the inviscid fluxes and the second order central differencing is used for

the viscous terms.

A normal shock is located downstream of the throat as shown in Fig. 6.5. No flow

separation is generated under this back pressure. The baseline mesh size is 100 � 60. When

y
�

is held as constant and the mesh is refined in both the horizontal and vertical direction,

the results have little variation. The inlet-diffuser results presented in this section are based

on the mesh size 100 � 120. The mesh in the horizontal direction is clustered around the

shock location to better resolve the shock profile.

Fig. 6.6 is the comparison of the upper wall surface pressure between the experiment

and the computation. The agreement is very good except that the computation predicts

the shock location a little downstream of the experimental shock location and the shock
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Figure 6.7: Static pressure distribution computed on the upper surface of the inlet-diffuser
with back pressure 0 � 72pt

strength a little too strong. It is found that the shock profile is sensitive to the y
�

. The y
�

value of 2.2 � 10 � 4, 7 � 10 � 6 are tested. The smaller y
�

yields a little closer shock location

to the experiment. The results shown in Figs. 6.5 and 6.6 have the y
�

value of 2 � 10 � 4.

The small y
�

effect is believed due to the first order extrapolation of the pressure on wall

surface instead of the requirement of the turbulence modeling. In the region with no shock,

the first order pressure extrapolation on the wall is insensitive to the distance of the first cell

to the wall, while in the shock region it is sensitive due to the large streamwise gradient.

As indicated in Fig. 6.6, the Roe scheme predicts the shock location slightly closer to the

experiment than the Zha CUSP scheme.

When the back pressure is reduced to pout � pt � 0 � 72. The normal shock is stronger and

the flow separation is induced. The same mesh as the previous case is used for this case.

Fig. 6.7 is the predicted pressure distribution compared with the experiment. Both the Zha

CUSP scheme and the Roe scheme predict the shock location accurately, but the shock
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strength predicted is too strong. However, the Zha CUSP scheme has the pressure profile

in the separation region downstream of the shock noticeably closer to the experiment than

that predicted by the Roe scheme.

It should be pointed out that the turbulence modeling is a critical factor for the predic-

tion accuracy of the shock wave-turbulent boundary layer interaction. Hence the discrep-

ancy between the calculation and experiment shown above is only partially attributed to the

different discretization schemes.

Fig. 6.8 is the pressure contours computed using pout � pt � 0 � 72 with the Zha CUSP

scheme, Roe Scheme, and Liou’s AUSM
�

scheme. A curved λ shock is formed due to the

shock wave-turbulent boundary layer interaction. The shape of the Mach contours of the

Zha CUSP scheme and the Roe scheme are very much alike. The contours computed by

the AUSM
�

scheme has significant oscillations near the wall.
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6.2 Zha CUSP2 Scheme in 3D Cases

The Zha CUSP2 scheme is tested in 3D cases for a transonic nozzle with circular-to-

rectangular cross-section, a transonic duct with shock wave-turbulent boundary layer in-

teraction, and a subsonic compressor cascade.

6.2.1 Circular-to-rectangular nozzle

A transonic nozzle with circular-to-rectangular cross section tested at NASA [130] is calcu-

lated. The transition duct connects the axisymmetric engine to the non-axisymmetric noz-

zle through a smooth progression of geometrically similar cross sections. There is no swirl

flow at the inlet. The Reynolds number based on the inlet diameter is Re=7 � 7058 � 105.

Due to its symmetric structure, only a quarter of the nozzle geometry is computed as shown

in Fig. 6.9 . Two symmetric boundaries are located at the bottom and back sides. The wall

is divided into two parts to generate the H-type mesh. For clarity, every two other grid line

is omitted in each direction in the plot. The baseline mesh size is 100 � 50 � 50 and is highly

stretched near the wall. No shock wave exists in the flow field. The total pressure, total

temperature and flow angles are fixed at the inlet boundary. Because of the supersonic flow

at the outlet, the zero-gradient boundary condition is used at the nozzle exit. No slip and

adiabatic wall conditions are used for the wall. The optimum CFL number used is 200.

Fig. 6.10 shows the contour lines of Mach number on the bottom symmetric plane for

the Zha CUSP2 scheme. The flow accelerates from subsonic at the inlet, reaches sonic at

the nozzle throat, and becomes supersonic at the exit. The top wall and side wall static pres-

sure distributions are compared with experimental results [130] in Fig. 6.11 and Fig. 6.12

respectively. Good agreement is obtained.

The Zha CUSP2 scheme is also more CPU efficient than the Roe scheme in the 3D

computation. On an Intel Xeon 1.7G Hz processor, the CPU time used to compute the in-

viscid flux per step per node is 1.84 � 10 � 5s for the Zha CUSP2 scheme and 2.9723 � 10 � 5s

for the Roe scheme . The Zha CUSP2 scheme is about 40 percent more efficient.
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Figure 6.10: Mach number contours of the nozzle with circular-to-rectangular cross section
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Figure 6.11: Top wall surface pressure distributions of the circular-to-rectangular nozzle
compared with the experiment

Mesh refinement study is carried out by doubling mesh density in ξ , η and ζ direc-

tions respectively. The computation results with mesh size 200 � 50 � 50, 100 � 100 � 50 and

100 � 50 � 100 are also plotted in Figs. 6.11 and 6.12. The same mesh height is kept on the

first inner cell close to the wall boundary for the mesh refinement. The mesh refinement

gives about the same results as the original baseline mesh as shown in Figs. 6.11 and 6.12,

which indicate that the solution is converged based on the mesh refinement.

6.2.2 3D compressor cascade

The second 3D case is to calculate a 3D subsonic compressor cascade tested at NASA

GRC [131]. The cascade has a chord length of 8.89 cm, a stagger angle of 60
�

and a solidity

of 1.52. The flow under two incidences (0
�

and 10
�
) are measured in the experiment. The

low incidence ( 0
�
) case is calculated here for its steady state results. More detailed steady

and unsteady simulation under the high incidence, 10
�

is carried out in Chapter 7.
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Figure 6.12: Side wall surface pressure distributions of the circular-to-rectangular nozzle
compared with the experiment

Even though the geometry incidence is set to 0
�

in the experiment for the low incidence

case, the actual incidence angle is considered to be 1
�

to 1.5
�

higher, due to the side wall

boundary layer effect. In the current numerical simulation, the incidence angle is set as

1.5
�
. The Reynolds number based the chord length is 9.67 � 105. As shown in Fig. 6.13 , a

mesh of 100(x) � 60(y) � 60(z) is used in the computation. In the streamwise direction, the

numbers of mesh cells allocated for the upstream, wall surface and downstream are 15, 70

and 15 respectively. For clarity, every other mesh line is omitted in the plot.

The simulation includes the top and bottom end walls, where the cascade airfoil shape

is very different from the one in the midspan as shown in Fig. 6.14 . The computation starts

an initial flow field with zero velocity. The total pressure, total temperature and flow angles

are fixed at the inlet. The static pressure is specified at the outlet. No slip and adiabatic

wall boundary conditions are applied on blade surfaces, top and bottom end walls. Periodic

boundary conditions are applied upstream and downstream of the blade in pitch direction.
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Figure 6.15: Cascade Mach contours on the midspan plane at low incidence

Fig. 6.15 shows the Mach number contours based on the Zha CUSP2 scheme on the

mid-span plane. Fig. 6.16 shows that the computed surface pressure (Cp � p∞ � p
ρ∞U2

∞
) distribu-

tion agrees very well with the experiment [131]. The reference pressure p∞, density ρ∞ and

velocity U∞ are the average values at the inlet. p is the local static pressure on the blade

surface. The result of the Zha CUSP2 scheme is also virtually identical to that of the Roe

scheme.

6.2.3 Transonic channel flow

The last 3D case is a transonic channel flow with shock wave-turbulent boundary-layer in-

teraction and is studied experimentally in reference [132]. The test section of the transonic

channel has an entrance height of 100 mm and a width of 120 mm. It is composed of a

straight top wall, two straight side walls. A bump with varying shape in span-wise direction

is mounted on the bottom wall. The boundary conditions are to fix the total pressure, total
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Figure 6.16: Cascade midspan plane surface pressure coefficient distributions compared
with experiment measurement

temperature and flow angles at the inlet and static pressure at the outlet. No slip adiabatic

wall boundary conditions are used on the walls.

In the present computation, the inlet Mach number is about 0.5. The Reynolds number

based on the entrance height is 5 � 105. A mesh of 90 � 60 � 60 is used for computation.

The mesh is mostly uniformly distributed in horizontal direction, but clustered in the bump

region to better resolve the shock wave. Fig. 6.17 shows the 3D mesh with every two other

grid line omitted for clarity. To resolve the turbulent boundary layer, the mesh is clustered

near the four walls.

Fig. 6.18 shows the computed shock wave structure (Mach number contours) compared

with the experiment [133] at 3 spanwise planes. They are located at Z � 60 mm, 75 mm

and 90 mm away from the back wall respectively. The plane at Z � 60mm is the central

plane of the channel. The outlet static pressure is adjusted to achieve the same shock

location as that in the experiment. The back pressure has the value of pout � pt � 0 � 53. The
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Zha CUSP2 scheme and the Roe scheme result in the shock wave structure very similar

to the experiment. The computed maximum Mach numbers using the Roe scheme and the

Zha CUSP scheme are a little lower than that in the experiment. However, the Zha CUSP2

scheme gives the maximum Mach number closer to the experiment than the Roe scheme.

Both the schemes predict the boundary layer thicker than that measured in the experiment.

This may be mainly due to the inadequacy of the turbulence modeling. The Baldwin-

Lomax model is based on the empirical mixing length assumption and is more reliable for

attached flows in equilibrium [134]. In the transonic channel, the flow is separated after the

throat, which makes the performance of the Baldwin-Lomax model not as good as the first

two cases with flow attached.

At Z =60 mm, the experiment shows no flow separation, so does the Zha CUSP2

scheme. However, the Roe scheme predicts a flow separation at that location, which is

different from the experiment. At location Z =75mm, both the Zha CUSP2 scheme and the

Roe scheme predict the flow separation similar to the experiment. However, at the location

Z =90 mm which is close to the side wall, the results computed by both the schemes predict

larger separation zone than that of the experiment.

The mesh refinement study with the mesh size of 180 � 60 � 60, 90 � 90 � 60 and 90 � 60 � 90

gives very similar results, which indicates that the solution is mesh independent.



Chapter 7

Stationary Cascade Separation

The flow separation of the NASA flutter cascade with stationary blades is numerically

studied in this chapter. The separation is caused by its high incidence angle. The van Leer

scheme is used for the inviscid flux evaluation because it gives better agreement with the

experiment measurement in the size of the separation region. The time-averaged separation

characteristics under 3 different inlet Mach numbers is first studied with the 3D steady

state simulation. Then the unsteady simulation is carried out based on the steady state

results. The vortex shedding, which is the mechanism behind the unsteady flow oscillation

is studied and described in details for the case of M=0.5. The frequency characteristics of

the unsteady results is analyzed with Fourier transform technique.

7.1 NASA Flutter Cascade

The test section of the NASA transonic flutter cascade facility is shown in Fig. 7.1 . The

test section has a rectangular cross section of 5.84 cm wide (pitch s) by 9.59 cm high

(height h). The aerodynamic chord C is 8.89 cm with a maximum thickness of 0.048C at

0.625C from the leading edge. This results in a solidity C � s of 1.52. The experimental

blades have constant cross sections in the span-wise direction, except near the end walls,

where they have large, diamond-shaped fillets to support the attachment shafts. The blades

109
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inlet flow

Figure 7.1: NASA transonic flutter cascade structure

are not exactly symmetric about the mid-span plane. The fillet on the drive-side is larger

than the one on the free side. This makes the full 3D calculation necessary.

The 3D mesh used here is similar to the cascade 3D mesh used in last chapter as shown

in Figs. 6.13 and 6.14. The end walls are located at the bottom and the top. The mesh

size is 100 (streamwise) � 60 (pitchwise) � 60 (spanwise) with 15, 70 and 15 mesh cells

allocated upstream, on and downstream the blade surface. The mesh is clustered in the area

close to the blade surface on the pitch direction and in the area close to the top and bottom

end walls in the spanwise direction. In the streamwise direction, the mesh is clustered in

the area close to the leading and trailing edges of the blade, where the flow structure is

complicated. The maximum y
�

at all wall boundaries is under 3.

The inlet and the outlet of the computational domain are located at 1.2C upstream and

downstream of the blade leading edge and trailing edge. No-slip adiabatic boundary con-

dition is applied on the blade surfaces and on the top, bottom end walls. The inlet and

outlet boundary conditions vary with the local Mach number. At the inlet, if the flow is

supersonic, all parameters, including the total pressure pt , total temperature Tt , the stream-

wise velocity and the flow angles α , β are given at the inlet boundary. If the inlet flow

is subsonic, the velocity is extrapolated from the inner domain. At the outlet boundary,
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if the flow is supersonic, all parameters are extrapolated from upstream to the boundary

with zero gradient. If the flow is subsonic, a constant static pressure pout is given. In the

pitch direction, the periodical boundary condition is applied on the boundaries upstream

and downstream of the blade surfaces.

The incidence angle and the inlet Mach number are the two important factors to deter-

mine the flow separation pattern in the cascade. In the following simulations, the cases with

incidence angles of 0
�

and 10
�
, and inlet Mach numbers of 0.5, 0.8 and 1.18 are computed

and compared with the experimental results. As suggested in [135], the flow incidence

angle ahead of the blade will not exactly follow the chordal incidence angle. The incidence

uncertainty in the experiment is up to 1.5
�
. Therefore, the incidence angle is adjusted for

each case in the computation based on the experiment results. During the process of the

Gauss-Seidel iterations, a smaller CFL number of 1.0 is used in the first 50 steps and then a

higher CFL number of 5.0 is used for the rest computation. For the 3D cascade simulation,

the van Leer scheme instead of the Roe scheme is used to evaluate the inviscid flux. The

Roe scheme predicts the separation region significantly larger than that in the experiment.

7.2 Steady State Results

7.2.1 Cascade flow without separation

Before studying the high incidence angle cases, the zero incidence angle case is computed

to validate the van Leer scheme in 3D condition. In the calculation, the flow incidence is set

as 2.5
�

for the case of incidence 0
�

in the experiment due to the experimental uncertainty.

The inlet Mach number of 0.5 is achieved by adjusting the back pressure at the outlet. The

Reynolds number based on the chord length C is 9.67 � 105.

Figure 7.2 shows the computed mid-span stream lines at incidence angle 0
�
. The

flow goes through the cascade passage smoothly without separation. The distribution of

the computed static pressure coefficients, Cp � p � p∞
1
2 ρ∞U2

∞
, at the mid-span plane is shown in

Fig. 7.3 , which is in good agreement with the experiment. In the Cp formulation, p is the
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Figure 7.2: Flow pattern of the inlet-diffuser of the NASA transonic cascade at incidence 0
�
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Figure 7.3: Mid-span static pressure distribution of the NASA transonic cascade at 0
�
,

M=0.5
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(a) M=0.5 (b) M=0.8 (c) M=1.18

Figure 7.4: Mid-span flow pattern of the NASA transonic cascade at 10
�

incidence under
different inlet Mach numbers

local static pressure, p∞, ρ∞ and U∞ are the averaged static pressure, density and velocity

at the inlet.

7.2.2 Cascade flow with separation

The flow is separated when the incidence is increased. The characteristics of the separa-

tion varies with the inlet Mach number. Mach numbers of 0.5, 0.8 and 1.18 are chosen

for calculation since the corresponding experimental measurement results are available for

comparison. The experimental incidence angle of 10
�

is used for all the calculations below.

M = 0.5

The stream lines on the mid-span plane with inlet Mach number 0.5 is shown in Fig. 7.4 (a)

. It differs from the low incidence angle case (Fig. 7.2) with a large flow separation area on

the suction surface, which starts immediately at the leading edge and extends down to 45%

of the blade chord. The computed and measured flow patterns from the bottom wall (left)

to the top wall (right) on the suction surface are plotted in Fig. 7.5 . The experimental

flow pattern is obtained with the dye oil technique. The computation shows the similar

flow pattern as measured in the experiment. The computed separation bubble length in the
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(a) Computed flow pattern (b) Experiment visualization

Figure 7.5: Suction surface flow pattern of the NASA transonic cascade at 10
�

incidence,
M=0.5

midspan location agrees very well with the experiment, but the computed separation area is

fuller in the span-wise direction. This indicates that the computed end wall boundary layer

is thiner than that in the experiment. The possible reason is that the computational domain

has shorter end wall length than the wind tunnel in the experiment.

The computed separation region has a parabola shape, which is approximately symmet-

ric about the blade mid-span plane. Two counter rotating vortexes are formed downstream

of the blade leading edge and the end wall corners.

The mid-span surface static pressure distribution is plotted and compared with the ex-

periment measurement in Fig. 7.6 . The pressure on the pressure surface agrees fairly well

with the experiment. In the area of the suction side leading edge, the computed pressure

rises more steeply than that of the measurement. The separation bubble length represented

by the cross of the surface pressure distribution on the suction and the pressure surface is

predicted accurately compared with the experiment.

M = 0.8

At the inlet Mach number of 0.8, the separation exhibits the similar pattern to that in the

case of Mach number 0.5. However, the size of the separation region increases significantly.
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Figure 7.6: Mid-span static pressure distribution of the NASA transonic cascade at 10
�

incidence, M=0.5

As shown in the computed stream lines in Fig. 7.4 (b), the separation bubble is larger in both

streamwise and pitchwise directions on the midspan plane. The separation region on the

suction surface becomes as long as 60% of the chord length. The growth of the separation

is also clearly shown in the suction surface flow pattern in Fig. 7.7 . The separation length

is a little longer than the corresponding experiment visualization result on the mid-span

plane and fuller in the spanwise direction. The asymmetry of the flow pattern due to the

asymmetric geometry is more clearly seen in Fig. 7.7.

The mid-span surface static pressure is plotted and compared with the measurement in

Fig. 7.8 . Similar to the case of M=0.5, the computed surface pressure agrees very well on

the pressure side. The main difference remains in the leading edge region of the suction

surface with the computed surface pressure rising too rapidly. Again, the separation bubble

length is predicted fairly well compared with the experiment.
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(a) Computed flow pattern (b) Experiment visualization

Figure 7.7: Suction surface flow pattern of the NASA transonic cascade at 10
�

incidence,
M=0.8
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Figure 7.8: Mid-span static pressure distribution of the NASA transonic cascade at 10
�

incidence, M=0.8
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(a) Computed flow pattern (b) Experiment visualization

Figure 7.9: Suction surface flow pattern of the NASA transonic cascade at 10
�

incidence,
M=1.18

M = 1.18

For the supersonic incoming flow with Mach number 1.18 and incidence of 10
�
, the flow

pattern is very different from those in the subsonic cases. In Fig. 7.4 (c), the stream lines

go through the cascade nearly smoothly. However, a small and thin separation region exists

on the center part on the suction surface, where the stream lines deviate from the suction

surface slightly. The separation region is clearly shown in the flow pattern on the suction

surface in Fig. 7.9 . Compared with the results of the subsonic cases above, the separation

is pushed more downstream with its size shrunk. The flow is attached before the separation

and re-attached after the separation. The reduced size of the separation may be due to the

increased kinetic energy with higher inlet Mach number compared with the subsonic flow.

The separation is mostly induced by the shock wave-turbulent boundary layer interaction.

The same flow pattern is observed in the experimental visualization (Fig. 7.9) with the

separation bubble size a little larger than that obtained in the computation.

There are two shock waves captured in the computation, the passage shock and lip

shock as shown in Fig. 7.10 . Compared with the experiment, the passage shock is located

more upstream than the measured one. It is suspected that the computed boundary layer

is predicted to be too thick and the excessive blockage pushes the shock more upstream.
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Figure 7.10: Experimental shock structure of the NASA transonic cascade at 10
�

incidence,
M=1.18

The local adverse pressure gradient caused by the shock wave-turbulent boundary layer

interaction is the reason to create the local separation shown in Fig. 7.9. In the experiment,

there is a very weak trailing shock, which is not captured by the computation.

7.3 Unsteady Simulation

The separation is believed to bring high unsteadiness to the cascade flow pattern. The

inlet Mach number is an important factor which affects the separation characteristics [136].

To study the influence of the inlet Mach number on the unsteady characteristics of the

separated flow, numerical simulation is carried out for high incidence angle cases with

Mach number 0.5, 0.8 and 1.18. Each unsteady calculation is carried out based on its

corresponding steady state result.

Due to the limitation of the computation capability, the physical time interval is cho-

sen as large as 10% of the characteristic time of the cascade, tc � C
U∞

. This time interval

varies with the inlet Mach number. The CFL number used in the pseudo time Gauss-Seidel
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Figure 7.11: Separation zone length variation with time in 3D stationary cascade at 10
�

incidence, M=0.5

implicit iteration is 20. Twenty pseudo time steps are used for each physical time step.

Two parameters are recorded to analyze the unsteady characteristics of the separation flow.

The first is the mid-span separation bubble length(x), which is marked by the streamwise

zero velocity point along the suction surface. The second parameter is the unsteady static

pressure (p) measured at the location of 13% downstream the leading edge on the suction

surface, which is the same as the experiment measurement location. The unsteady pressure

is referred as “checkpoint pressure” below.

M = 0.5

In the case of Ma = 0.5, the physical time interval is set as 0.052744 ms.

Fig. 7.11 shows the time history of the separation length oscillation in a time segment

of 16 ms (30tc). The separation length increases rapidly from 0.45C to 0.66C in the first

1.63 ms (3tc) and then decreases to 0.63C at t � 2 ms (3.8tc). The separation region then

grows again toward downstream to 0.73C at t � 3 ms (5.7tc). With the time progressing,
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Figure 7.12: Separation zone length variation frequency spectrum in 3D stationary cascade
at 10

�
incidence, M=0.5

the separation region boundary oscillates back and forth on the suction surface. The aver-

age length tends to increase gradually until a periodic state is reached after 4.4 ms (8.3tc).

The oscillation of the separation length is between 0.73C and 0.76C with a fixed cycle. The

periodicity information is clearly extracted using the Fourier transform technique. The sep-

aration region oscillation spectra is calculated from the unsteady data after 4.4 ms (8.3tc).

The frequency spectrum is shown in Fig. 7.12 , which clearly shows a peak at 770 Hz. This

indicates the separation length oscillates with a period of 1.25 ms (2.37tc).

Compared with the steady state solution, the unsteady separation calculation results in

larger separation size. The outlet boundary condition implementation is the possible reason

for the difference. The fixed static pressure brings reflective wave back to the upstream and

contaminates the computation result, which is more sensitive in the unsteady computation.

The influence can be minimized by using the non-reflective boundary condition at outlet.

The unsteady checkpoint pressure data shows similar characteristics of the unsteady

separation flow. Fig. 7.13 shows a segment of 16 ms (30tc) pressure oscillation data. The
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Figure 7.13: Suction surface checkpoint pressure variation with time in 3D stationary cas-
cade at 10

�
incidence, M=0.5

pressure start at p � 2.659 from the steady state result. The oscillation is between p � 2.68

and p � 2.72 after t � 4.4 ms (8.3tc). The oscillation amplitude is about 1.5% of the averaged

pressure level. The frequency spectrum is shown in Fig. 7.14 with a peak at 770 Hz.

The mechanism behind the unsteady characteristics of the separation is illustrated in

Fig. 7.15 , where the evolution of a separation oscillation cycle is plotted. The stream

lines at 8 time levels show the leading edge vortex shedding development. There are 4

physical time steps (0.21 ms, 0.4tc) between 2 sequential plots. The relationship between

the oscillation of the pressure and the separation length is shown in Fig. 7.16 .

At the starting time level a (t � 4.4305 ms, 8.4tc), the separation region has just passed

the maximum length location. There are 2 vortexes in the separation bubble. They are

rotating in the same direction. The checkpoint pressure is going up. At time level b

(t � 4.6415 ms, 8.8tc), the two vortexes are pushed toward downstream. The second vortex

diminishes. The first vortex grows quickly and becomes the only vortex in the separation

bubble. The separation region becomes thicker in the span-wise direction, but shorter in
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Figure 7.14: Suction surface checkpoint pressure frequency spectrum in 3D stationary cas-
cade at 10

�
incidence, M=0.5

the stream-wise direction. The surface checkpoint pressure reaches its maximum level at

this time level. At time level c (t � 4.8524 ms, 9.2tc), the separation bubble approaches its

shortest length in stream-wise direction, and maximum thickness in the span-wise direc-

tion. The checkpoint pressure is going down. At time level d (t � 5.0634ms, 9.6tc), the

separation bubble has passed the minimum length location, and begins to extend toward

downstream. The checkpoint pressure is still going down. At time level e (t � 5.2744 ms,

10.0tc), a new vortex is generated at leading edge and becomes the first vortex. The check-

point pressure reaches its minimum value. The separation length is still increasing. At time

level f (t=4854 ms, 10.4tc), the first vortex continues to grow. The second vortex is pushed

toward downstream. Both the checkpoint pressure and the separation length are going up.

The latter is approaching its maximum location. At time level g (t � 5.6964 ms, 10.8tc), the

two vortexes have almost the same size, the flow structure is close to the starting time level

a. The separation boundary has passed its maximum location and begin to shrink toward

upstream. The checkpoint pressure is going up. At time level h (t � 5.9073 ms, 11.2tc), the
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Figure 7.15: Separation bubble evolution in 3D stationary cascade at 10
�

incidence and
M=0.5
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Figure 7.16: Checkpoint pressure and separation locations relation in 3D stationary cascade
at 10
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incidence, M=0.5

second vortex diminishes. A new cycle is started at this time level.

The leading edge vortex shedding exhibits obvious periodical pattern in its evolution

process. The leading edge keeps generating new vortexes. The new vortex pushes the

old vortex bubble toward downstream and the old vortex decreases in size at the same time.

When the two vortexes become of the same size, the maximum separation length is reached,

where the separation bubble has the thinnest size in span-wise direction. As the new vortex

grows further, the old vortex will diminish. The separation bubble will move upstream and

makes the bubble thicker. The leading edge surface checkpoint pressure reaches its max-

imum level when the separation bubble shrinks and reaches its minimum level when the

separation bubble boundary extends. The vortex generation, pressure variation and separa-

tion length oscillation have the same frequency characteristics with a phase difference as

shown in Fig. 7.16. Such oscillation may be one of the reasons to cause to blade vibration.
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Figure 7.17: Separation zone length oscillation in 3D stationary cascade at 10
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incidence,
M=0.8

M = 0.8

The physical time interval used in the calculation for the case of Mach number 0.8 is

0.0342 ms. A similar flowfield unsteady characteristics is exhibited in the computation

results.

Fig. 7.17 and Fig. 7.18 show the separation length and the checkpoint static pressure

oscillation history in a time period of 21 ms. A clear periodicity is shown in these two

figures. It is found in the time averaged steady state study in [136] that, the increase of the

inlet Mach number will enlarge the separation bubble in size. Fig. 7.18 indicates that the

inlet Mach number increase also increases the amplitude of the pressure oscillation. The

oscillation amplitude is increased to about 5% of the averaged pressure level. The increased

kinetic energy in the inflow bring higher unsteadiness intensity to the separated flow filed.

The corresponding frequency analysis is shown in Fig. 7.19 and Fig. 7.20 respectively.

The frequency analysis is based on the oscillation data after t=5 ms. The unsteady separa-

tion flow exhibits higher oscillation frequency because of the increased inlet Mach number.
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Figure 7.18: Checkpoint pressure oscillation in 3D cascade at 10
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incidence, M=0.8
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Figure 7.19: Separation zone length oscillation frequency spectrum in 3D cascade at 10
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incidence, M=0.8



127

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  500  1000  1500  2000  2500  3000

ps
f

frequency (Hz)

Figure 7.20: Checkpoint pressure oscillation frequency spectrum in 3D stationary cascade
at 10

�
incidence, M=0.8

A clear frequency spectrum peak is shown at 1400 Hz in both figures, twice the frequency

in the case of M = 0.5.

M = 1.18

In the steady state simulation of the cascade at M = 1.18 in [136], the separation flow

characteristics are very different from those at subsonic. The increased kinetic energy in

the inflow makes the flow attached to the blade surface in the leading edge region. A

smaller size separation region appears after the shock wave because of the interaction of

the shock wave and the turbulent boundary layer. The separation bubble shrinks in size and

is located only in a small region at the center of the suction surface region.

The physical time interval in the calculation is set as 0.02483 ms. The pressure check-

point is located outside of the separation region in the supersonic case. The pressure os-

cillation history is shown in Fig. 7.21 . The oscillation amplitude is very small compared

to the cases of M = 0.5 and M = 0.8. The flow tends to be stable at the leading edge. The
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Figure 7.21: Checkpoint pressure oscillation in 3D stationary cascade at 10
�

incidence,
M=1.18

pressure oscillation frequency spectrum is shown in Fig. 7.22 .

The computed characteristics of the separation flow above is similar to the experiment

measurement in [137]. In [137], when the blade is fixed, the blade surface pressure for

low subsonic inlet flow at M = 0.5 and low supersonic inlet flow at M = 1.1 exhibits low

unsteadiness. Strong self-induced oscillations with a frequency of 110Hz is observed in

high subsonic inlet flow at M = 0.8. However, the latter study indicated that the strong low

frequency oscillation is attributed to the tunnel resonance characteristics instead of the flow

unsteadiness due to the flow separation in [138]. The cascade flow separation is believed

to have a direct relation with the wall surface pressure unsteady oscillation, which is an

important factor to the blade vibration. Further detailed numerical research is necessary to

discover the mechanism.
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Chapter 8

Oscillating Cascade Unsteady

Simulation

As part of the work to study the flutter phenomenon in cascade, the fluid-structural interac-

tion in the unsteady cascade flow is simulated in this chapter. The experiment measurement

is carried out in the same flutter cascade as Chapter 7, but with forced vibrating blades. To

save computation time, the numerical studies conducted in this chapter is in 2D condition

for the mid-span section. The flows in multiple passages are simulated simultaneously us-

ing parallel computation. The high resolution scheme, Zha CUSP2 scheme, developed in

foregoing chapters is used to calculate the control volume interface inviscid flux. The cas-

cade is first simplified as a 2-passage case to study the mesh dependency of the numerical

results. Then the cascade is studied extensively in full scale under 3 oscillation frequencies

and 2 incidences. The end wall influence on the flow pattern spatial periodicity is studied

by comparing the 2-passage results with the full scale results. The unsteady results are

analyzed to show the influence of the oscillation frequency and the incidence on the blade

aeroelastic characteristics.
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Figure 8.1: Tow-dimensional cascade geometry

8.1 Unsteady Performance Parameters

Unlike the stationary cascade simulation, in the forced oscillating cascade analysis, the os-

cillation of the flowfield and the blade stability are of the interest. The stability analysis

is based on the aeroelastic unsteady parameters, for example, the unsteady pressure coef-

ficient, the unsteady aerodynamic moment and the damping coefficient. More parameters

are introduced as the following.

8.1.1 Inter-blade phase angle and reduced frequency

A 2D linear cascade is shown in Fig. 8.1 . Axis x is along the axial direction and axis

y is along the pitch direction. All blades are identical in geometry. The chord length C

is defined as the distance between the leading edge (LE) and the trailing edge (TE). The

cascade pitch is s. The flow incidence angle i is defined as the angle between the flow

direction and the camber line tangent direction at leading edge.

The blades vibrate about their elastic axes harmonically in pitching mode with a con-

stant inter-blade phase angle (IBPA). The motion of the nth blade is determined by,

αn 
 t � � α0 	 αARe I exp 
 i 
 ωt 	 nβ �Z�pJ (8.1)

where α is the angular deflection about the elastic axis, α0 is the deflection at mean posi-

tion, n is the blade index, t is the time, αA is the amplitude of deflection angle variation,
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Figure 8.2: Unsteady two-dimensional cascade nomenclature

Re denotes the real part of a complex value, ω is the angular frequency, β is the inter blade

phase angle. The blade n precedes the blade n � 1 by phase angle β .

Fig. 8.2 shows the rotation of a single blade about its elastic axis. Attention should be

paid to the definition of the deflection angle and moment used in aeroelasticity. The angular

deflection α is defined as positive when the blade is nose up. It is opposite to the regular

angle definition, which is positive in anti-clockwise direction.

The aerodynamic moment is defined as,

M � � f r � p 
 x � ds (8.2)

where ds is the differential surface area vector with positive direction pointing into the

blade, p 
 x � is the local static pressure, r is the vector pointing from the elastic axis pivot to

the local surface pressure acting point. The moment is also positive in clockwise direction,

instead of the anti-clockwise direction in regular definition.

To be consistent with the experiment report, the reduced frequency kc is defined based

on the chord length C, instead of the half chord used in Eq. (5.6) on page 87,

kc � ωC
U∞

(8.3)
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8.1.2 Unsteady pressure coefficient and moment coefficient

In the current unsteady fluid-structural interaction simulation, the pressure oscillation his-

tory is recorded during the unsteady time marching for post-processing. As the time march-

ing goes on, the pressure oscillation becomes periodic with the same frequency as the blade

motion. The pressure data in a certain oscillation cycle after the periodicity is achieved is

then picked up for the Fourier transform analysis. If the quality of the periodicity is not

good enough, pressure data over several sequential motion cycles are averaged. The aver-

aged pressure data within one cycle is used for the Fourier transform. As shown in Fig. 8.3

, the pressure signal oscillates harmonically about its time average with a certain ampli-

tude. After the Fourier transformation from time domain to frequency domain, the pressure

oscillation frequency information is extracted and shown clearly in the p � f plot.

In the forced vibration cases studied in this chapter, the most important parameter for

stability analysis is the first harmonic pressure, which incorporates the pressure oscillation

amplitude and phase angle. The zeroth harmonic pressure is the time averaged pressure,

which is not used in the unsteady analysis. The first harmonic pressure is a complex vari-

able. However, the start point of the unsteady pressure data may be randomly selected. In

the resulted first harmonic pressure, the amplitude p1A is independent of the start point.

However, the phase angle φ1p changes with the randomly selected starting point and is

not unique. Similarly, the blade motion characterized by its deflection angle is analyzed

using the Fourier transform. Because the blades under investigation are forced in a pure
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sinusoidal torsional motion, the frequency domain plot shows only two harmonics: the ze-

roth harmonic which is the mean deflection angle and the complex first harmonic which

contains the information for the deflection oscillation. The amplitude is the prescribed de-

flection amplitude α1A and the phase angle φ1α is also determined by the selection of the

unsteady deflection data. Usually, the pressure response, or the pressure oscillation, is not

in phase with the blade motion. It may precede or lag behind the blade motion and the

phase lead or lag varies along the blade surface.

In the present work, the first harmonic pressure complex is made independent of the

unsteady pressure data starting point selection by normalizing the pressure phase angle φ1p

with the blade motion phase angle φ1α . This is achieved by a vector division between the

pressure complex value and the blade motion complex value,

p1N � p1
α1 � α1A

� p1Aeiφ1p

eiφ1α
� p1Aei q φ1p � φ1α r (8.4)

where p1 and p1N are the original and normalized pressure complex, subscript A stands

for the complex amplitude, 1 indicates the first harmonic. This phase normalization can

also be considered as shifting the pressure complex and the blade motion complex by a

phase angle of -φ1α simultaneously. The resulted blade motion has a phase angle 0 and the

resulted pressure complex has a phase angle of φ1p
� φ1α , which is the phase angle relative

to the blade motion. In the rest of the chapter, the subscript N is omitted for clarity. If not

specified, all first harmonic unsteady parameters are phase normalized by the blade motion

phase angle by default.

An unsteady pressure coefficient is defined based on the first harmonic pressure p1,

Cp 
 x � t � � p1 
 x � t �
ρ∞U2

∞αA
(8.5)

where x is the dimensionless chordwise distance normalized by the chord length C, ρ∞,

U∞ are respectively the free stream density and velocity. Unlike the steady state pressure

coefficient, the unsteady pressure coefficient is a complex value with pressure oscillation
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phase and amplitude information contained.

The aerodynamic moment computed by Eq. (8.2) on page 132 also varies with the blade

motion. The unsteady complex aerodynamic moment coefficient is defined as,

CM 
 t � � M 
 t �
ρ∞U2

∞αAC2 � � f r � p 
 x � t � ds

ρ∞U2
∞αAC2� � f r

C
� p 
 x � t � d s

C
ρ∞U2

∞αA
(8.6)

In reference [131], for a flat plate airfoil oscillating along its half chord axis, Eq. (8.6)

is further simplified to the following,

CM 
 t � � " 1

0
 xp

C
� x

C ! ∆Cp  x
C ! d

x
C

(8.7)

where xp � C = 0.5. The pressure difference coefficient ∆Cp is defined as the difference

between the pressure surface and suction surface unsteady coefficients,

∆Cp 
 x � � Cp = pre 
 x � � Cp = suc 
 x �� Cp = lower 
 x � � Cp = upper 
 x � (8.8)

where the subscripts pre and suc stand for the pressure and suction surfaces, which are

the corresponding lower and upper surfaces in the two-dimensional cascade nomenclature

(Fig. 8.1).

8.1.3 Work per cycle and aerodynamic damping

When the blade oscillates in fluid flow, energy is exchanged between the blade and its

surrounding airstream. The blade aerodynamic stability is determined by the work per
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motion cycle of the airstream acting on the blade. The blade is aerodynamically stable

when the work is negative and aerodynamically unstable when the work is positive. The

positive work means flow does work on the blade and the negative work means the blade

does work on the flow.

The work per motion cycle is given by the cyclic integral of the product of the real parts

of the moment and the differential deflection angle,

W � f MRdαR (8.9)

where, the subscript R indicates the real part of the first harmonic complex of moment and

pressure. Subscript 1 is omitted in this section for clarity.

The first harmonic angle deflection and the first harmonic moment are written as,

α � αAeiωt (8.10)

M � MAeiωt � �
MR 	 iMI

� eiωt (8.11)

where MA and MI are the unsteady moment amplitude and the imaginary part of the first

harmonic moment. The blade motion oscillation amplitude αA is a real value. However the

moment amplitude MA is generally a complex value, because the unsteady moment is not

generally in phase with the blade motion.

Substitute Eqs. (8.10) and (8.11) into Eq. (8.9), and then use orthogonality to finish the

integration, the work per cycle is obtained as,

W � παAMI (8.12)

Because the work per cycle is proportional to MI, the out of phase part of the moment, the

blade is unstable when MI T 0 and stable when MI L 0. The work coefficient is obtained
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by having Eqs. (8.9) and (8.12) divided by ρ∞U2
∞C2,

CW � W
ρ∞U2

∞C2 � f αACMR
dαR � πα2

ACMI
(8.13)

In a linear, damped system surrounded by airstream, if the damping is small and the

system is executing a single-degree-of-freedom torsional motion, the aerodynamic damp-

ing parameter ξ of the system is related to the out of phase part of the unsteady moment

as [139],

ξ � � MI
αA

(8.14)

The dimensionless damping coefficient Ξ is obtained by dividing Eq. (8.14) through ρ∞U2
∞C2,

Ξ � ξ
ρ∞U2

∞C2 � � CMI
(8.15)

Hence the system is stable when Ξ T 0 and is unstable when Ξ L 0.

The damping coefficient is related to the work coefficient as,

Ξ � � CW
πα2

A
(8.16)

Buffum et al. [131] use a work per cycle chordwise distribution to analyze the blade

local stability,

C
�
w �  0 � 5 � x

C ! Im 
 ∆Cp � (8.17)

where Im stands for the imaginary part of a complex variable.

The blade is considered as locally unstable when the fluid does work on the blade

(C
�
w T 0). A negative C

�
w increases the blade local stability.
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Figure 8.4: Full scale cascade computation domain configuration

8.2 Parallel Computation Implementation

The NASA Lewis Oscillating Cascade is basically designed to simulate the two dimen-

sional flow conditions [131]. As shown in Fig. 8.4 , the cascade has 9 identical blades,

marked as B1 through B9, surrounded by 2 end walls. The computation domain is decom-

posed to 10 subdomains according to the flow passages, which are separated by the blades

and the streamlines going through the leading edge and trailing edge of each blade. Be-

cause the stream lines are unknown before calculation, the dividing interfaces upstream and

downstream the blades are the straight lines aligning with the wall surfaces. The domain

partitioning boundary condition is applied on these interfaces . The flow is going through

the cascade from top-left to bottom-right in Fig. 8.4.

The computer system used in current work is a Beowulf cluster composed of 14 dual

processor DELL workstations. The CPU speed varies from 1.7 GHz to 3.2 GHz. The

built in memories vary from 1 GB to 3 GB. All the 14 machines are equipped with 1

GBps interface cards and are connected through cables. The operating system is the Red

Hat Linux. The hard disk space is shared by all machines using the NFS file system. A

single copy of the executable code is shared by all processors in the MPI group during

computation.

In the current simulation, the 10 passages are computed simultaneously by 10 proces-

sors on 5 machines . The first processor P1 works as the coordinator processor to syn-

chronize the activity of all the 10 processors during iteration. For stationary cascade com-
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putation, the information exchanged across the domain partitioning boundary includes the

primitive variables (ρ , V, e) and the residual information. After each iteration, the coordi-

nator processor gathers residual information from all subordinator processors and finds the

universal maximum residual for the whole domain. When the universal maximum residual

reaches the convergence criteria, the coordinator processor issues a termination order to

all processors to terminate the computation. When local time stepping is turned off, the

universal time interval for the whole domain is exchanged and determined similarly. When

the blade is oscillating, the boundaries of the subdomains are also time dependent. The

boundary mesh coordinates and the boundary moving velocities are exchanged through the

domain partitioning boundaries.

The even load across the processors is achieved by applying the same mesh size on all

subdomains. The baseline mesh size used in the computation is 195(ξ ) � 180(η). The inlet

and outlet boundaries are set as 1.5 and 3 times chord length away from the blade LE and

TE in axial direction. A part of the mesh is shown in Fig. 8.5 with the regions of LE and TE

zoomed in for more details. The H-type mesh is generated for each subdomain respectively.
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Each subdomain shares the grid point distribution on the domain partitioning boundaries

with its neighbors. As suggested in reference [14], an additional algebraic boundary layer

mesh is generated in the wall surface region to achieve good orthogonality. The grid lines

are made either parallel or normal to the solid surface. This is preferred by the Baldwin-

Lomax model, in which the Fmax and ymax based on Eq.(2.87) on page 2.87 is searched

following a line normal to the solid boundary. As shown in Fig. 8.5, the grid lines are

orthogonal on all blade surfaces except the small regions at LE and TE. For clarity, the

mesh is plotted every 4 lines in the un-zoomed plots. The blade surface has 100 points in

streamwise direction. The boundary layer has 40 points in pitchwise direction. Because of

the high gradient of the flow variables in near wall region, the mesh is clustered near the

wall surfaces. The grid points are also clustered toward the LE and the TE in streamwise

direction.

When the blades vibrate at a prescribed frequency, the mesh in each subdomain moves

accordingly. The boundary layer mesh is fixed to the solid surface and move with the

blade. The inner mesh is recalculated by solving the elliptic equation. In the current study,

the blades and the meshes vibrate harmonically. The mesh generation time is reduced by

saving a series of meshes in a vibration cycle in advance and reusing them in the following

vibration cycles. To save the storage, meshes in 20 uniform time intervals are generated

before the simulation starts. The meshes at any time level during the vibration are linearly

interpolated based on the previously-generated meshes.

8.3 Computation Configuration

To be consistent with the experiment [131], the simulation is configured as the following.

All blades vibrate simultaneously along a pitching axis at 0.5 chord with a constant IBPA

of 180
�
. The two neighboring blades always vibrate in opposite direction. The oscillating

amplitude is 1.2
�

and the reduced frequency based on chord varies at kc � 0.4, 0.8 and 1.2.

The inlet Mach number is 0.5 and it is achieved by adjusting the outlet static pressure level.
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The Reynolds number based on the chord length is 9 � 105. The flow incidences for the

full scale simulation are 0
�

and 10
�
. In order to obtain good agreement with the steady

state experimental surface pressure distribution, the inlet flow angles are adjusted to 61
�

in

the cases of 0
�

incidence (60
�
flow angle) and 67.2

�
in the cases of 10

�
incidence (70

�
flow

angle).

In order to study the end wall influence on the unsteady results, a simplified 2-passage

cascade is computed before the full scale computation by applying the periodic boundary

condition. The simplified cascade oscillates with frequency kc = 0.8 and 0
�

incidence.

The computation result mesh dependency is also studied. The multi-passage full scale

simulation is then conducted for the 9-blade cascade with the wind tunnel end walls under

3 frequencies, kc=0.4, 0.8 and 1.2 and 2 incidences, 0
�

and 10
�
, for more realistic results.

The periodic boundary condition is not needed. The computation results are compared with

the experiment measurement. The influence of the end walls are studied by comparing the

the two cases with the same frequency (kc=0.8) and incidence (0
�
) from both simulations.

For the unsteady dual-time stepping, one physical blade oscillation cycle is divided into

100 time intervals and 100 pseudo time Gauss-Seidel iterations are carried out for each

physical time step. The 100 pseudo time iterations are sufficient to obtain a converged

solution within a physical time step with the residual reduced by 3 orders in magnitude.

Before the unsteady simulation, the corresponding steady state calculation is carried out to

obtain the initial flow field for the unsteady computation.

8.4 Simulation in Two Passage Cascade

The two passage cascade simulation uses the meshes of two inner neighboring passages

(P2 and P3) in the compressor cascade. As shown in Fig. 8.6 , The blade between the

two passages is called BC (blade at center) and the two blade surfaces on the two outside

periodic boundaries are treated as blade BP (blade at periodic boundary) .

The steady state pressure coefficient distributions along the blade surfaces are plotted
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Figure 8.6: Two-passage cascade periodic computation domain

in Fig. 8.7 . The pressure coefficient prediction agrees well with the measurement. The

result on BC agrees very well with that of BP, which shows good periodicity is achieved on

the pitchwise direction.

The 2-passage cascade unsteady simulation is conducted with incidence 0
�

and kc � 0.8.

Fig. 8.8 shows the pressure variation history on two points on the suction surface (US) and

the pressure surface (LS) respectively. The pressure on the suction surface is located at

x � C = 0.15 and the pressure on the pressure surface is located at x � C = 0.1. The temporal

periodicity is achieved very soon after the start of the vibration simulation. Because of the

excellent temporal periodicity, the unsteady data extracted from a single blade motion cycle

is enough for the unsteady Fourier transformation analysis. The IBPA of 180
�

is clearly

shown by comparing the pressure maximums and minimums on BC and BP.

The unsteady pressure coefficients are plotted in Fig. 8.9 and Fig. 8.10 for suction sur-

face (US) and the pressure surface (LS) respectively. The unsteady pressure coefficient Cp

is expressed in terms of the real part or in phase part and the imaginary part or out of phase

part. On the suction surface, as shown in Fig. 8.9, the CFD results compare fairly well

with experiment data after 30% chord. The real part of the coefficient is predicted lower

than experiment data on leading edge, but the trend agrees very well with the experiment.

The imaginary part is over predicted in the leading edge region. On the pressure surface,

as shown in Fig. 8.10, the real part of the unsteady pressure coefficient agrees well with

the experiment data. The imaginary part is under predicted compared with the measure-
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Figure 8.11: Local stability analysis in 2-passage cascade under low incidence, kc=0.8

ment on the front part of the blade. This means that the CFD does not accurately capture

the phase angle difference between the pressure response and the blade motion. A local

flutter stability analysis based on the aerodynamic work per cycle chordwise distribution,

calculated using Eq. (8.17) on page 137, is presented in Fig. 8.11 . The current numerical

simulation predicts a larger local stable region on the front part of the blade. On the aft

part, the experiment data indicates a shallow stable region. The CFD predicts the trend

very well. The aft part stable region is predicted more shallow than the experiment.

8.5 Mesh Dependency

The Baldwin-Lomax turbulence model requires orthogonal mesh in the computation do-

main. This is partially achieved by generating an algebraic boundary layer orthogonal

mesh on the blade surface in the current study. More numerical study on the computation

mesh dependency is carried out for the simplified 2-passage cascade with kc=0.8 and inci-

dence 0
�
. The mesh size is adjusted in η direction, with an emphasis on the boundary layer
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Table 8.1: Mesh dependency study in 2-passage oscillating cascade under lower incidence

mesh hbnd � mesh Nbnd � mesh Nη Ξ
4 0.00854 20 90 0.559
7 0.01139 40 180 0.556
9 0.02278 40 180 0.592

11 0.04556 80 360 0.527

algebraic orthogonal mesh property. The parameters considered in the study are the total

mesh number in η direction, the mesh cell number and the thickness in the boundary layer

mesh. The mesh cell number in ξ direction is kept constant as 195.

The meshes used for the dependency study are listed in Table. 8.1 . hbnd � mesh and

Nbnd � mesh are the thickness and mesh cell number of the boundary layer mesh. Nη is the

total mesh cell number in η direction and Ξ is the computed blade damping coefficient.

The mesh used in the foregoing 2-passage cascade simulation is named as mesh 9. It is

compared with two loose meshes, mesh 4 and mesh 7 and a dense mesh 11 in the following

study. When the mesh cell number changes in the 4 meshes, the first inner cell close to

the wall is kept the same height to make the comparison fair. This is achieved by applying

appropriate stretch factor in η direction.

As shown in Fig. 8.12 , the steady state computation results show very similar static

pressure coefficient distribution in the 4 meshes. The discrepancy is negligible on most of

the blade surface. Some small difference is found in the LE region on the suction surface

(x � C=0.02-0.05).

The unsteady results are compared for the 4 meshes in Figs. 8.13 through 8.16 . These

results are more sensitive to the mesh configuration than the steady state results. Fig. 8.13

shows the static pressure oscillation histories at the same location on the pressure surface

(LS) as Fig. 8.8. The pressure oscillations coincide in dense meshes. The loose mesh 4 pre-

dicts slightly higher magnitude and average in the static pressure oscillation. The unsteady

aeroelasticity analysis gives more comprehensive comparisons. As shown in Fig. 8.14,

mesh 7, 9 and 11 give close results on the imaginary part of the upper surface unsteady
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Figure 8.16: Local stability mesh dependency in 2-passage cascade under low incidence

pressure coefficient. The values predicted by the loose mesh 4 is a little lower on most of

the chord. In the real part on the upper surface, mesh 7 and 9 gives similar results. The

finest mesh 11 predicts higher imaginary pressure coefficient than the other 3 meshes and

it is closer to the measurement. On the lower surface, as shown in Fig. 8.15, all 4 meshes

give very similar results on the real part. The loose mesh 4 gives lower imaginary pressure

coefficient than the other 3 meshes. The real and imaginary parts are similar on the other 3

meshes. The influence of the meshes on the blade local stability is shown in Fig. 8.16. In

the front part of the blade, the 4 meshes predict similar trend in the local stability, which

are all over predicted. In the aft part, the results based on mesh 4 are closest to the mea-

surement at x � C � 0 � 5 � 0 � 85. In the TE region, mesh 7 and 9 predict stability, however

mesh 11 predicts instability. Even though the finest mesh 11 works better in Fig. 8.14, it

does not works as well as other 3 meshes in the local stability in Fig. 8.16. The damp-

ing coefficients computed from the unsteady numerical results are shown in Table. 8.1 for

these meshes. The finest mesh 11 gives the lowest damping coefficient and the second

finest mesh 9 gives the highest damping coefficient. No experimental damping coefficient
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Figure 8.17: Steady state Mach contours in full scale cascade under low incidence

is available for comparison.

8.6 Simulation in Full Scale Cascade

8.6.1 Low incidence

The full scale steady and unsteady simulations use the same inlet flow angle as that of the

2-passage case. In the steady state calculation, all blade are parallel to each other at their

mean positions. As shown in Fig. 8.4, the end wall is made up of 3 sections, which have

different angles relative to the x axis: α1 � 61
�
, α2 � 60

�
and α3 � 64

�
. The middle section

is parallel to the blade at its mean position. The front and aft sections follow the inlet and

outlet averaged flow directions obtained in the 2-passage steady state computation.

The steady state Mach number contours for the full scale cascade is shown in Fig. 8.17

. The flow pattern is highly influenced by the end wall especially in the outer passages, P1

and P10. The influence is weakened quickly from the outer passages to the inner passages.

Good periodicity in flow pattern is achieved among the inner passages (P3 through P8).

Three center blades, B4, B5 and B6 are chosen to study the steady and unsteady periodicity

in the rest of the paper. Even though the periodicity looks good in the Mach number

contour plot, the static pressure distribution still shows the influence of the end walls on

different blades. Fig. 8.18 shows the pressure coefficient chordwise distribution on the
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Figure 8.18: Steady state pressure coefficient in full scale cascade under low incidence

3 center blades. The experiment measurement and the 2-passage calculation results are

also plotted for comparison. The surface pressure increases gradually from B4 to B6 on

both the pressure surface and the suction surface. The pressure distribution on blade B6

is closest to the 2-passage periodic results on most part of the surfaces. The experiment

measurement also shows the pressure variation on different blades [131], but its variation

trend is opposite to the current numerical results. A possible reason for this difference is

that the inlet and outlet end wall angles used in the experiment may differ from the values

used in the current simulation. The experimental angles are not available. Such a pitchwise

flow pattern difference is also expected in the following unsteady calculations.

The full scale unsteady simulation is first carried out for a reduced frequency kc = 0.8

to study the end wall influence on the periodicity of the blade unsteady characteristics.

Figs. 8.19 and 8.20 are the unsteady pressure coefficient chordwise distribution on the 3

center blades compared with the 2-passage cascade and the experiment results. On the

upper surface, as shown in Fig. 8.19, the 3 blades have very similar unsteady coefficients

on most of the chordwise distance. The results of blade B6 are closest to those of the 2-
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Figure 8.19: Unsteady state pressure coefficient on upper surface in full scale cascade
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Figure 8.21: Local stability analysis in full scale cascade calculation at low incidence,
kc � 0.8

passage calculation. The difference between the full scale results and the 2-passage results

mainly locate at the front and center part of the blade. The full scale results agree with the

experiment better in the center part. On the lower surface, as shown in Fig. 8.20, the full

scale results of the 3 blades are similar. The 2-passage results are closer to the experiment

data in the real part. As shown in Fig. 8.21 , the full scale calculations predict higher stabil-

ity on the front part of the blade compared with the 2-passage results. The full scale results

are closer to the experiment measurement on the aft part of the blade. In the chordwise

region of x � C = 0.5 to x � C=0.7, the measured stability is better predicted in the full scale

results. The 2-passage results shows instability in the same region. The end wall influ-

ence on the flow pattern periodicity is clearly shown in the unsteady aerodynamic moment

oscillation plots within a single blade motion cycle in Fig. 8.22 . The moment is plotted

versus the normal deflection angle, α
� � �

α � α0
� � αA. Because of the end wall influence,

the moment oscillations on the 3 center blades are different. They are also different from

the 2-passage calculation results. The anti-clockwise direction of all the unsteady moment
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curves indicates negative work acted by the fluid on the blade. The blade motion is there-

fore damped down by the fluid flow. The blade motion is stable, which corresponds to a

positive damping coefficient Ξ. The area enclosed by the moment curve indicates the mag-

nitude of the work exchanged between the fluid and the blade, which is also proportional

to the magnitude of the damping coefficient. The damping coefficients on all the 9 blades

in the full scale calculation versus the blade number are shown in Fig. 8.23 . The damping

coefficient varies among the blades. The damping coefficients for blade B4, B5 and B6 are

0.67, 0.65 and 0.68 respectively. Blade B1 has the lowest stability (Ξ � 0.45) and blade B9

has the highest stability (Ξ = 1.4). The damping coefficient distribution is more uniform on

the center blades (B3 through B7), even though small variation exists. The blade stability

in the full scale cascade depends on the location of the blade. The damping coefficient

obtained in the 2-passage periodic computation is 0.55.

Fig. 8.24 plots a series of Mach number contours around blade B5 and B6. A separation

bubble is generated and grows periodically on the leading edge of the suction surface. At
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Figure 8.23: Damping coefficient distribution in full scale cascade calculation at low inci-
dence, kc � 0.8

t � 0, the two blades are initially located at their mean positions and are parallel to each

other. Blade B5 then rotates in the anti-clockwise direction with a negative deflection angle

(nose down). At the same time, blade B6 is rotating in the clockwise direction with a

positive deflection angle (nose up). At t=0.2T, blade B5 is close to its minimum deflection

position. The separation bubble at its LE is pushed downstream and shrinks in size. At

t=0.4T, blade B5 is rotating back from its minimum deflection location towards its mean

position, the separation bubble disappears from the suction surface. At t � 0.8T, a new

separation bubble is generated when blade B5 passes its maximum deflection position and

rotates back toward its mean position. The bubble obtains its maximum size when the blade

is close to its mean position. Similar phenomenon is observed on the neighboring blade B6,

but with a phase difference of 180
�
.

More extensive unsteady simulations are carried out for reduced frequencies kc � 0.4

and kc = 1.2. Figs. 8.25 and 8.26 show the unsteady pressure coefficient chordwise dis-

tribution of kc � 1.2. Similar to the results of kc � 0 � 8, the predicted unsteady complex
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dence, kc � 0.8
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Figure 8.27: Local stability analysis in full scale cascade calculation at low incidence,
kc � 1.2

pressure coefficients are close to each other on the 3 center blades, even though some small

difference exists. As shown in Fig. 8.25, on the upper surface, the imaginary parts of CFD

results agree very well with the experiment results except that it is over-predicted in the

region of x � C=0.15 to x � C=0.40. The real part is also predicted quite well on the middle

and aft part of the blade. On the lower surface, as shown in Fig. 8.26, the predicted real

parts compare very well with experiment. The Imaginary part is under-predicted from LE

to x � C = 0.7. The local stability analysis for kc = 1.2 is plotted in Fig. 8.27 . The correct

trend is predicted compared with the experiment measurement, even though the magnitude

does not agree very well. The stability is over-predicted in LE region. The unstable region

predicted on the front part of the blade is smaller than the experiment results. The stability

is predicted on the aft part, but the magnitude is smaller than the experiment data. The

damping coefficients for all the blades are plotted in Fig. 8.28 . The damping coefficients

for blade B4, B5 and B6 are 0.81, 0.78 and 0.84 respectively. The stability increases with

the frequency. Similar to the results of kc = 0.8, the most stable blade is blade B9 (Ξ=1.5)
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Figure 8.28: Damping coefficient distribution in full scale cascade calculation at low inci-
dence, kc � 1.2

and the least stable blade is blade B1 (Ξ=0.6). The damping coefficient is more uniformly

distributed on the central blades. The variation of the damping coefficient on the center

blades increases with the increasing frequency.

Because of the lack of experiment data, the unsteady pressure coefficient of kc=0.4

is not presented for comparison. However, the local stability is analyzed and compared

with the experiment data in Fig. 8.29 . Similar to the results of kc = 0.8 and kc � 1.2,

the trend is predicted well, but the magnitude differs from the experiment. As expected,

the damping coefficient distribution is more uniform on center blades (Fig. 8.30 ). The

variation of their magnitudes decreases with the decreasing vibration frequency compared

with the high frequency cases of kc = 0.8 and kc = 1.2. The damping coefficients on blade

B4, B5 and B6 are 0.448, 0.446 and 0.434 respectively. The most stable blade is B9 with

Ξ = 1.02 and the least stable blade is B1 with Ξ = 0.28.

The unsteady aerodynamic moment oscillations on blade B5 under the 3 frequencies

under investigation are plotted together and compared in Fig. 8.31 . The damping coeffi-
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cient increasing with the increased frequency is indicated by the increased area enclosed by

the unsteady moment oscillation curves. Fig. 8.32 shows the damping coefficients on the 9

blades all increase with the increased frequency. The damping coefficient is roughly uni-

form on the central blades, mainly from B3 through B7, under the 3 frequencies. The local

stability analysis is summarized for all the 3 frequencies in Fig. 8.33 . The computation re-

sults indicate higher stability near the leading edge for higher frequency vibration, which is

consistent with the experiment measurement. Even though the destabilization region on the

front part of the blade and the stability magnitude on the aft part of the blade predicted by

the numerical computation are smaller than those in the experiment, the trend is predicted

well. Both the destabilization and stabilization increase with the increased frequency.

The static pressure oscillation histories on two points on blade B5 and B6 are shown in

Fig. 8.34 . These two points are located at x � C=0.15 on the suction surfaces of B5 and B6.

Very similar to the simplified two-blade cascade pressure oscillation history in Fig. 8.8,

the pressure oscillation in full scale computation reaches good periodicity very quickly in
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Figure 8.35: Steady state Mach contours in full scale cascade at high incidence

1-2 blade motion cycles. However, the pressure oscillation magnitude is larger on blade

B6 than that on blade B5. The pressure oscillation magnitude slightly decreases with the

increased frequency.

8.6.2 High incidence

At high incidence cases, the nominal incidence in the experiment report is 10
�
. In the

current numerical investigation, just like the low incidence cases, a single passage case with

periodic boundary condition in pitchwise direction is first computed under steady state to

find the flow angles and the back pressure. After several iterations, a flow angle of 67.2
�

is

finally selected at the inlet. The corresponding outlet flow angle is 65
�
. These two angles

are applied at the upstream and downstream parts of the end walls to make the inner flow

go through the cascade smoothly and keep the flow angles in full scale cascade close to the

single passage case.

The steady state Mach contours under high incidence are plotted in Fig. 8.35 . The

flow separates on the upper (suction) surfaces of the 9 blades. The scale of the separation

varies among the blades. The maximum separation size is shown on blade B1. The flow

pattern looks periodic in the inner passages especially from blade B3 through B7. However,

the flow pattern periodicity is not as good as the low incidence case. The steady state

pressure coefficient distribution on 3 center blades, B4, B5 and B6 are plotted in Fig. 8.36 .

Compared with the periodic computation results, the full scale computation predicts lower
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Figure 8.36: Steady state pressure coefficient in full scale cascade at high incidence

pressure on all the 3 blades on both pressure surface and suction surface. The results

on blade B6 are closest to the periodic results. The flow pattern is more influenced by the

existence of the end walls in the high incidence case than that in the foregoing low incidence

case. The separation increases the interaction between the inner flow and the end walls,

which makes the inner flow more sensitive to the end walls. The flow pattern periodicity is

expected to be improved by adjusting the end wall configuration more carefully.

The full scale cascade at high incidence is then simulated in unsteady cases at 3 frequen-

cies. The static pressure oscillation histories at 15% x � C on the lower (pressure) surface

on two central blades are plotted in Fig. 8.37 . Compared with Fig. 8.34, the pressure os-

cillation temporal periodicity becomes poor when the flow incidence is increased. This is

caused by the large separation on the suction surface. The flow becomes more unsteady be-

cause of the separation. When the frequency increases, the temporal periodicity becomes

even worse. The pressure oscillation amplitude decreases with the increasing frequency.

The 180
�
IBPA is more clearly shown by the low frequency plot with kc � 0.4. These 3

cases start from the same steady state flow field. The pressure oscillation approaches peri-
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odicity more quickly in the low frequency case (kc=0.4).

Just like the periodic variation of the separation shown in Fig. 8.24 at low incidence,

a separation bubble in shown on the suction surface on each blade and varies periodically

with the blade motion. The Mach contours under frequency kc � 0 � 8 around B5 and B6 in

a single motion cycle are plotted in Fig. 8.38 . The separation bubble is generally larger in

the high incidence case than that in the low incidence case. Even though large separation

bubble exists in the blade suction surface at LE region, the bubble may disappear at certain

blade position because of the unsteady flow incidence. As shown in Fig. 8.38, the two

blades start from the same mean positions, but move toward opposite direction. The bubble

is clearly shown on the suction surface of B5, but almost invisible on B6. When blade

B5 rotates nose down (anti-clockwise) to α
�
=-0.95 at t � 0.2T, the blade is close to its

minimum deflection position, the separation bubble is pushed toward downstream and the

bubble center is closer to the mid-chord location. The size of the bubble does not change

much. When blade rotates further and passes its minimum location to α
� � -0.59 at t � 0.4 T,

the separation bubble disappears from the blade surface. The low velocity flow dominates

on the blade suction surface region. At t � 0.6T, blade B5 has passed its mean position and

is moving toward its maximum deflection position. The low velocity region on the suction

surface decreases in size even further. A new separation bubble is generated at the B5 LE

when the blade passes its maximum deflection position and begins to move back to its mean

position at t � 0.8T. The size of the bubble increases when the blade is back to its mean

location. Generally speaking, the separation bubble is generated when the blade passes its

maximum location and moves toward its mean location. The bubble size increases with the

decreased deflection (or incidence) angle. The bubble is then shed downstream when the

blade passes its mean location and moves toward its minimum position. Meanwhile, the

bubble loses its strength and finally disappears from the suction surface. The low velocity

region on the suction surface decreases when the blade rotates nose up from its minimum

deflection position. A similar phenomenon repeats on the neighboring blade B6, but with a

phase angle difference of 180
�
. The periodic variation of the separation bubble brings even
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Figure 8.38: Unsteady Mach contours in full scale cascade at high incidence, kc � 0 � 8
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Figure 8.39: Upper surface unsteady pressure coefficient in full scale cascade at high inci-
dence, kc � 0 � 4
higher influence on the unsteady flow pattern in the cascade. The unsteady performance

will differ from that in the low incidence cases.

The unsteady stability analysis is conducted for the high incidence cases under the 3

frequencies in Figs. 8.39 through 8.48. Because of the periodicity of the calculation results

is not as good as that in the low incidence cases, the numerical unsteady pressure in the last

4 cycles are averaged for the Fourier transform analysis.

In the low frequency case of kc � 0.4, the stability analysis is shown in Figs. 8.39

through 8.41 . The unsteady pressure coefficient is predicted very well in trend on both the

upper surface and the lower surface. However the magnitude does not compare very well.

On the upper surface, as shown in Fig. 8.39, the imaginary parts compares well with the

experiment results on LE and TE region, but are over predicted at mid-chord regions. The

real part is predicted well on the aft part of the blade, but under predicted in the front part.

The numerical results for the 3 center blades compare well with each other, which indicates

the good spatial periodicity in obtained. On the lower surface, as shown in Fig. 8.40, the
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Figure 8.40: Lower surface unsteady pressure coefficient in full scale cascade at high inci-
dence, kc � 0 � 4
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Figure 8.41: Local stability analysis in full scale cascade at high incidence, kc � 0 � 4
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Figure 8.42: Upper surface unsteady pressure coefficient in full scale cascade at high inci-
dence, kc � 0 � 8
trend of the unsteady pressure coefficient is predicted very well for the 3 center blades

on both real part and imaginary part. The real part and the imaginary part compare very

well with the experiment on the aft part of the blades. On the front part, the imaginary

part is under predicted, the real part is over predicted. In Fig. 8.41, the trend of the local

stability is predicted very well on the front part of the blade. The magnitude of the stability

is predicted higher than the experiment measurement. The stable region in the numerical

analysis starts from x � C � 0.05, earlier than x � C � 0.15 in the experiment measurement.

The LE instability is well predicted. On the aft part, the numerical simulation predicts a

little instability from x � C � 0.5 to x � C � 0.85, which is different from the experiment. At

TE region, both the numerical results and the experiment measurement show a stable region

from x � C � 0.85 to x � C � 1. The local stability analysis results are very close among the 3

center blades.

In the case of kc � 0 � 8, the numerical analysis is plotted in Figs. 8.42 through 8.44 . As

shown in Fig. 8.42, the upper surface pressure coefficients are predicted better than the case
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Figure 8.43: Lower surface unsteady pressure coefficient in full scale cascade at high inci-
dence, kc � 0 � 8
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Figure 8.44: Local stability analysis in full scale cascade at high incidence, kc � 0 � 8
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of kc � 0.4. The numerical results compare well with the experiment in trend and in the

magnitude in LE region and the aft part of the blade, but are over predicted in the mid-chord

part. The trend of the predicted lower surface unsteady pressure coefficient compare well

with the experiment measurement but the magnitudes are under predicted for both the real

part and the imaginary part of the front part of the blade (Fig. 8.43). The numerical results

for the 3 center blades do not compare with each other as well as that in the low frequency

case of kc � 0.4. The local stability analysis shows better agreement with the experiment

measurement in the case of kc � 0.8 than the low frequency case (kc � 0.4) in Fig. 8.44.

The numerical computation shows similar stable region after the mid-chord region even

though the size of the stable region and the magnitude of the local stability are smaller than

experiment measurement. On the front part of the blade, the stability is over predicted in

magnitude, but the trend compares well with the experiment. Similar to the analysis in kc �
0.4, the size of the stable region is predicted larger than the experiment. The LE instability

is also predicted. However, the difference of the local stability magnitude becomes more

obvious among the 3 center blades, especially in the front part from x � C � 0.15 to x � C �
0.35. On the aft part, the local stability is close for the 3 center blades.

The results of the high frequency case kc � 1.2 are plotted in Figs. 8.45 through 8.47 .

The discrepancy in the results across the blade increases with the increased frequency. As

shown in Fig. 8.45, the unsteady pressure coefficient differs obviously among the 3 blades

on the front part of the blade upper surface. The best agreement with the experiment is

achieved on blade B6, except the imaginary part is under predicted on the front part and the

real part is over predicted in the LE region. On the lower surface, as shown in Fig. 8.46,

the trend of the unsteady pressure coefficient agrees with the experiment measurement, but

the the magnitude is under predicted for all the 3 blades. Similar to the results on upper

surface, the best agreement with the experiment is obtained on blade B6. The discrepancy

exists also in the local stability analysis in Fig. 8.47. The overall agreement with the exper-

iment is improved compared with the low frequencies, kc � 0.4 and kc � 0.8. On the aft

part, the numerical simulation predict stability with similar magnitude as the experiment
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Figure 8.45: Upper surface unsteady pressure coefficient in full scale cascade at high inci-
dence, kc � 1 � 2
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Figure 8.46: Lower surface unsteady pressure coefficient in full scale cascade at high inci-
dence, kc � 1 � 2
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Figure 8.47: Local stability analysis in full scale cascade at high incidence, kc � 1 � 2
measurement. The best agreement is shown on blade B6, which show smaller stability

magnitude than the other two blades. On the front part, even though the numerical results

varies significantly among the 3 center blades, the trend of the numerical prediction com-

pares well with the experiment measurement on the 3 blades. The numerical computation

shows stability in the same region as the experiment from x � C � 0.15 to x � C � 0.5. The

highest local stability is found at x � C � 0.24, 0.25 and 0.28 on blade B4, B5 and B6 respec-

tively compared with maximum location in the experiment at x � C � 0.17. Similar to the

experiment, the local stability decreases from its maximum location to the leading edge and

approaches instability at x � C � 0.13 for blade B4 and x � C � 0.15 for blade B5. Blade B6

stays stable in the same region and reaches its lowest stability at x � C � 0.15. Even though

the leading instability is obtained in the numerical simulation on the 3 center blades, the

blades are all shown stable in the region around x � C � 0.05, which does not exist in the

experiment measurement. The size and the maximum magnitude of the leading edge stable

region is smallest on blade B4.

The overall stability variation with the increased frequency is shown in Fig. 8.48 . Just
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Figure 8.48: Damping coefficient in full scale cascade at high incidence

like the low incidence cases, the least stable blade under the 3 frequencies is blade B1.

However, blade B9 is not the most stable blade for all the 3 frequencies. The most stable

blade is B8 when kc � 0.4 and B2 when kc � 0.8 and 1.2. The damping coefficient dis-

tributions across the center blades are not as uniform as that in the low incidence cases.

The best uniform distribution is obtained on blade B4, B5 and B6 under kc � 0.4.. The

overall stability indicated by the magnitude of the damping coefficient decreases with the

increased frequency. The similar result is reported in [63].



Chapter 9

Conclusions

A fully implicit three-dimensional time accurate solver is developed to solve the non-linear

Favre-averaged Navier-Stokes equations with the Baldwin-Lomax turbulence model. The

governing equations are discretized with the finite volume method. The inviscid flux across

the control volume surface is calculated with upwind schemes. A new low diffusion E-

CUSP scheme, Zha CUSP scheme, which is consistent with the characteristic direction of

the disturbance propagation, is developed to improve the efficiency and accuracy of the

inviscid flux computation. The inviscid flux differencing achieves the third order accuracy

by the MUSCL differencing approach. The viscous flux achieves the second order with

central differencing. The second order time marching is achieved by the dual-time step-

ping scheme. The Gauss-Seidel line iteration is applied on the inner pseudo time step to

implicitly solve the linear governing equations. The convergence is accelerated using the

technique of local time stepping. The solver is made parallel using the MPI protocol.

The solver is first validated for its turbulence model, parallel computation speedup scal-

ability and unsteady calculation capability. The Zha CUSP scheme and it modified version

are compared with other popular upwind schemes in 2D and 3D test cases. The solver is

then used to study the steady and unsteady characteristics of a 3D cascade separation flow.

Finally the aeroelastic performance of a flutter cascade with a constant IBPA is studied with

parallel computation.
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In this dissertation, the Zha CUSP schemes are the first time to be applied in moving

grid systems and 2D and 3D calculations. The implicit Gauss-Seidel iteration with dual

time stepping is the first time to be used for moving grid systems. The NASA flutter

cascade is the first time to be calculated in full scale.

9.1 Validation Calculation

The Baldwin-Lomax turbulence model in the Navier-Stokes solver works very well in the

viscous boundary layer and the shock wave-boundary layer interaction. The velocity distri-

bution in the subsonic flat plate boundary layer flow case compares very well with the law

of the wall. The shock wave in the transonic inlet-diffuser is clearly captured and the pres-

sure distribution on the wall agrees well with the experiment measurement. In the flat plate

boundary layer flow parallel computation, a very good parallel computation speedup scal-

ability is achieved by distributing the computation jobs evenly on multiple processors. The

solver performs very well in unsteady simulation. In the unsteady transonic inlet-diffuser

case, the frequency of the self-excited shock wave oscillation is fairly well predicted. In

the forced oscillating airfoil calculation, the predicted histories of the unsteady coefficients

of moment and lift compare well with the experiment measurement.

9.2 Zha CUSP Schemes

The performance of the Zha CUSP schemes is compared with the Roe scheme, AUSM
�

scheme, van Leer scheme, and van Leer-Hänel scheme.

The original Zha CUSP scheme is tested in 2D cases. In the supersonic adiabatic lami-

nar flat plate boundary layer, the Zha CUSP scheme accurately resolve the boundary layer

velocity and temperature profiles using the first order differencing. The solution is as ac-

curate as that of the Roe scheme and the AUSM
�

scheme and hence demonstrates the low

diffusion of the new scheme. In the transonic converging-diverging nozzle, oblique shock
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waves and reflections are crisply captured even though the shock waves do not align with

the mesh lines. The predicted wall surface isentropic Mach number distribution agrees well

with the experiment. In the transonic inlet-diffuser with shock wave-turbulent boundary

layer interaction, the Zha CUSP scheme and the Roe scheme predict the surface pressure

distributions agreeing well with the experiment for the case of a weak shock. For the strong

shock case, both the Zha CUSP scheme and the Roe scheme over predict the strength of

the shock wave. However, the pressure distribution predicted by the Zha CUSP scheme is

closer to the experiment. The AUSM
�

solution has large pressure oscillations.

The Zha CUSP scheme is modified to the Zha CUSP2 scheme and applied in 3D cases.

For the transonic nozzle with circular-to-rectangular cross section and the subsonic com-

pressor cascade, the wall static pressure distributions computed by the Zha CUSP2 scheme

are in good agreement with the experiments. The CPU time to calculate the flux using the

Zha CUSP2 scheme is about 40% less than that used by the Roe scheme. For the transonic

channel case, the shock wave structure given by the Zha CUSP2 scheme agrees well with

the experiment. The result of the Zha CUSP2 scheme agrees better with the experiment

than the one predicted by the Roe scheme, which gives flow separation that does not exist

in the experiment. The Zha CUSP2 scheme also predicts the peak Mach number closer to

the experiment than that of the Roe scheme.

The Zha CUSP schemes are shown to be accurate, efficient and robust for 2D and 3D

flows.

9.3 Stationary Cascade Separation Computation

The steady and unsteady characteristics of the separation phenomenon in a transonic flutter

cascade under high incidence is numerically studied in 3D with a incidence angle of 10
�

and 3 inlet Mach numbers, 0.5, 0.8 and 1.18. The van-Leer scheme is applied.

In steady state results, high incidence triggers the flow separation on the blade suction

surface. At subsonic inlet Mach number 0.5 and 0.8, a large separation region is formed
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immediately from the leading edge when the incidence is increased from 0
�

to 10
�
. The

inlet Mach number determines the characteristics of the separation region. When the inlet

flow is subsonic, the size of the separation region increases with the inlet Mach number.

This is evidenced as the separation region of Mach 0.8 is greater than that of Mach 0.5.

The predicted separation flow pattern and the separation bubble length agree well with the

experiment. The overall predicted surface pressure distribution agrees reasonably well with

the experiment, except in the suction surface leading edge region where the computation

predicts the pressure rise more steeply than that of the experiment. When the inlet flow

becomes supersonic, shock waves appear in the flow path close to the cascade leading edge.

The shock wave-turbulent boundary layer interaction causes the flow separation, which is

pushed more downstream with smaller size compared with those in the subsonic cases.

In the unsteady simulation results, the high incidence cascade separation flow shows a

sinusoidal pattern on the oscillation of the surface pressure and the separation bubble size.

A frequency spectrum peak is obtained at 770Hz for the case of M=0.5 and 1400Hz for the

case of M=0.8. The leading edge vortex shedding is the mechanism behind the unsteady

characteristics of the subsonic high incidence separation flow. New vortexes are continu-

ously generated at the suction surface leading edge. The new vortex grows and pushes the

old vortexes downstream. The interaction between the vortexes results in the periodical

oscillation of the separation bubble size and the surface pressure. The vortex generation,

pressure variation and separation length oscillation have the same frequency characteris-

tics with a phase difference. The characteristics of the separation flow is determined by

the inlet Mach number. When the inlet flow goes from lower subsonic to higher subsonic,

the size and the oscillation intensity of the separation bubble are enhanced. The flowfield

oscillation peak frequency increases. When the inflow goes further to supersonic, the flow

is attached on the leading edge. A small size separation bubble due to the interaction of the

shock wave and the turbulent boundary layer is located right after the shock wave.
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9.4 Oscillating Cascade Unsteady Simulation

The oscillating cascade is calculated with parallel computation in 2D with 2 incidences, 0
�

and 10
�

and an inlet Mach number 0.5 under 3 oscillation frequencies, 0.4, 0.8 and 1.2 and

a IBPA of 180
�
.

The unsteady results are more sensitive to mesh configuration. The computed flowfield

is affected by the existence of the end walls. The steady state blade surface pressure varies

with the blade position in the cascade. The periodicity of the flow pattern is improved by

aligning the end walls to flow direction. The end wall influence attenuates quickly from

boundary passages to center passages. Good periodicity is achieved in the inner passages.

All blades in the full scale cascade are stable, which is indicated by a positive damping

coefficient. The damping coefficient is more uniformly distributed on center blades. The

damping coefficient increases with the increased frequency in low incidence cases, but

decreases in high frequency cases. The spatial periodicity deteriorates when the incidence

increases. The large separation on the suction surface brings higher unsteadiness to the

flow. Its interaction with the blade surface and the end walls affect the flow periodicity.

The temporal periodicity is highly affected by the increased frequency in high incidence

cases. The unsteady pressure coefficient and the local stability are predicted well in trend

compared with the experiment. But the magnitudes differ from the experiment. The leading

edge instability is captured in high incidence cases. When the frequency is increased, the

local stability compares better with experiment.



Chapter 10

Future Work

The fully implicit 3D parallel Navier-Stokes solver developed in the current provides a

powerful and reliable tool for the fluid-structural interaction research in turbomachinery.

The new Zha CUSP schemes are proved robust, efficient and accurate in the numerical

simulation. The following issues are recommended by the author to further improve the

performance of the Navier-Stokes solver for the future work.

Turbulence models

The Baldwin-Lomax model is applied for its simplicity. However its poor performance in

separation flows affect the solver’s capability to handle more complicated flows in turbo-

machinery. The one-equation Baldwin-Barth [57] model, Spalart-Allmaras [58] model and

the Wilcox’s κ � ω model [59] have demonstrated good performance in turbomachinery

study. They are good options to be added into the solver.

Multi-grid and residual smoothing

The multi-grid and the residual smoothing are another two popular and effective conver-

gence acceleration methods used in turbomachinery. The current solver can be made more
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efficient if they are adopted, which will improve the solver’s ability in handing more com-

plicated 3D turbomachinery problems.

3D fluid-structural interaction simulation

The unsteady full scale multi-passage cascade is calculated using parallel computation in

2D only in the current work to save computing time. This is reasonable for the special

flutter cascade studied, which is designed intentionally for 2D flows. However, the flows

in turbomachinery have very strong 3D characteristics. The full annular stages in turbo-

machinery is even different from the linear cascade. A full 3D calculation is required to

carry out more realistic turbomachinery research. This is feasible when more time saving

is achieved by more effective convergence acceleration techniques, the effective multi-grid

and residual smoothing, are adopted in the solver.

Fluid-structural interaction with self-excited oscillating blades

The self-excited shock wave oscillation in stationary inlet-diffuser and the fluid-structural

interaction around the forced oscillating blades are calculated in the current work. How-

ever, the fluid-structural interaction in reality is more complicated. To be more general, the

blade motion should be resulted from the fluid-structural interaction, not given in advance.

The current studies are more focused on the one-way fluid response to the oscillating struc-

ture. The fluid-structural interaction with the flow induced vibrating blades should be added

to simulate more general turbomachinery problems.

Multi-block computation domain

Efforts have been made in the current solver to handle the complicated geometries. The

full scale cascade in the linear cascade is able to be split into individual passages and

computed by multiple processors simultaneously. The mesh orthogonality requirement of
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the Baldwin-Lomax model is assured by the additional boundary layer mesh attached on the

blade surface region. However, the geometries in reality may be much more complicated.

Applying the multi-block topology in the computation domain can improve the solver’s

adaptability for turbomachinery research. A series of sub-blocks can be devised to satisfy

the special requirements at different locations in the computation domain.



Appendix A

MPI Implementation

The MPI protocol provides a widely used standard for writing MPI programs. The MPI

specifications have been defined in C and Fortran routines. A parallel program use the MPI

protocol by calling the MPI routines in the code. The LAM/MPI version 6.5.9 is obtained

free from http://www.lam-mpi.org/ and is adopted in the current code.

A.1 MPI Basics

MPI uses objects called communicators and groups to define which collection of processes

may communicate with each other. The data is exchanged between processes within the

same group associated with the same communicator. Each member process is indexed

with a unique integer rank, which is used to specify the source and target process in data

exchange. In the current code, the MPI_Comm_world is the only communicator used for

all MPI processes.

A standard MPI programming flowchart is shown in Fig. A.1 . The MPI environment is

first initialized, then an optional construction of the derived data type is conducted. Once

the environment is set up, the MPI communication routines are used to carried out the mes-

sage exchanges between neighboring subdomains during the integration. After all compu-

tation is done, the MPI environment is finalized.
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Figure A.1: MPI programming standard flowchart

The routines used for the initialization and finalization of MPI environment are the MPI

environment management routines. MPI_init is used to initialize the MPI execution

environment. It must be called and be called only once in every MPI program and must

be called before any other MPI functions. MPI_Comm_size is used to determine the

number of processes (np) in the communication group associated with the communicator.

MPI_Comm_rank is used to determine the rank or the index of the calling process in the

communicator. After calling this routine, each process will be assigned a unique integer

rank between 0 and np � 1. MPI_Finalize is used when all MPI communication is done

to terminate the MPI execution environment.

The construction of derived data type is optional. The fundamental MPI commu-

nication is carried out based on the primitive data types, for example MPI_integer,

MPI_double_precision. When the data to be exchanged are located non-contiguously

in memory, each element will have to be exchanged individually between two neighbor-

ing processes, or the data is first copied to an contiguous memory block and then the

new memory block is exchanged as a unit. A better way to handle the non-contiguous
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data is to construct an appropriate derived data type to include all the data elements to

be exchanged at one time and transfer them as a single block using one communication

call. This will simplify the programming and achieve higher efficiency in inter-process

data transferring. The derived data type used in the current code are constructed us-

ing the following MPI routines. MPI_Type_contiguous makes contiguous copies

of a primitive data type. MPI_Type_vector and MPI_Type_hvector are simi-

lar to MPI_Type_contiguous, but allows regular gaps (strides) in the displacement.

MPI_Type_vector and MPI_Type_hvector specify the gap in the unit of the base

data type and in the unit of bytes respectively. MPI_Type_extent returns the size in

bytes of the specified data type. All derived data types are constructed only once and

should be registered to the system using MPI_Commit before they are used by other MPI

routines. After the registration, a unique handle will be assigned to each derived data type.

MPI point-to-point communication operations typically involve message passing be-

tween two, and only two processes. In a communication pair, one task is performing a

send operation and the other task is performing a matching receive operation. The com-

munication can be carried out in two one-way routines (MPI_Send and MPI_Recv) or

in a two-way routine MPI_Sendrecv. The one-way routine sends or receives a message

and block until the requested data is available in the application buffer in the sending or

receiving process. The two-way routine sends a message and posts a receive before block-

ing. It blocks until the sending application buffer is free for reuse and until the receiving

application buffer contains the received message. These communications repeat in every

computation iteration.

More detailed descriptions about the MPI routines are available from the documentation

at http://www.lam-mpi.org/ or from reference [90].
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A.2 MPI Programming Example

In the current code, the MPI data exchanging is carried out for the flow variables ρ , ρu, ρv,

ρw and ρe (2 layers), turbulent viscosity µt (1 layer), computation residual and its location
 i � j � k � . The maximum residuals on all subdomains are transfered to the process with rank

0 to determine the maximum residual for the whole domain. When the residual criteria is

reached, a stop signal is sent from process rank 0 to all other processes to terminate their

computations. If a uniform time step is used, the minimum time steps ∆t on all sub-domains

are also exchanged to determine the the time step appropriate for the whole domain. If the

moving grid system is enabled, the boundary coordinates x, y and z (1 layer) and the grid

moving velocity (ξt ,ηt , ζt , 1 layer) are also exchanged every time the boundary is updated.

The communications for residual and time step are relatively simple. For all other variables,

an array of data on the boundary surface (3D) or line (2D) are to be exchanged every

time between neighboring processes. These arrays of data are not contiguously located in

memory. More complicated derived data types are constructed for each variable to increase

the data transferring efficiency. The turbulent viscosity µt is chosen for description in the

following MPI programming example.

The current code is programmed in Fortran 90. In each MPI program, the MPI library

header file is required to be included at the beginning as,

include ’loading/path/mpif.h’

The loading path is installation dependent. It is “/usr/local/include/” for the

current code.

MPI environment initialization

The MPI environment initialization is carried out once at the beginning of the program.

The following example are excerpted from the current code.

call mpi_init(ierr)
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call mpi_comm_size(mpi_comm_world, np, ierr)

call mpi_comm_rank(mpi_comm_world, rank, ierr)

Here, ierr is the integer to indicate the return status of the MPI routine, the communicator

is the universal mpi_comm_world, np indicates the total process number involved in the

current parallel computation, rank is the system assigned rank or identifier for the calling

process.

Derived data type construction

At first, the exact length in bytes of the data type mpi_double_precision is assigned

to an integer variable sizeofdouble for later use.

call mpi_type_extent(mpi_double_precision, sizeof-

double,

ierr)

The 3D array defined for µt is visturb(0:il+1,0:jl+1,0:kl+1). il, jl, kl

are the subdomain cell numbers in ξ , η , ζ direction. The extra phantom cells as deep

as 1 layer are added to the subdomain on each direction. The data is contiguous fol-

lowing the directory of ξ (0 g il+1), then η (0 g jl+1) and ζ (0 g kl+1). The data

elements for exchange with the neighboring process is a 2D array. For example, on the

right side boundary, the data array visturb(il,1:jl,1:kl)will be sent to the right

side neighboring process to update its left side phantom boundary layer variables in vis-

turb(0,1:jl,1:kl). The data in these 2D arrays are not contiguous in memory. A

turbxi data type is created for this type of data exchange as the following.

call mpi_type_vector(jl, 1, irange,

mpi_double_precision, line, ierr)

call mpi_type_hvector(kl, 1,
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irange*jrange*sizeofdouble, line, tur-

bxi, ierr)

call mpi_type_commit(turbxi, ierr)

The first routine call constructs a temporary line data type to include a line of data of type

mpi_double_precision in η direction (1 g jl). There are jl blocks in a line. In

each block, there is 1 base data type mpi_double_precision. The displacement

between two blocks is irange (number of base data types). Here irange is equal to

il+2, which refers to 0:il+1. The second routine call constructs the turbxi data type

based on the temporary line data type. Similar to the first routine call. There are kl blocks

in a turbxi. In each block, there is 1 base data type line. The displacement between

two blocks is irange*jrange*sizeofdouble (in unit of bytes). jrange is equal

to jl+2, which refers to 0:jl+1. The new turbxi data type is registered to the system

in the third routine call.

There are other two data types, turbeta and turbzeta constructed similarly for

turbulent viscosity µt communication in η and ζ directions respectively.

Point-to-point communication

During computation iterations, the turbulent viscosities are exchanged between processes

every time when their values are updated locally. Following the previous turbxi data

type example, the turbulent viscosity exchange is carried in the code as the following.

call mpi_sendrecv(visturb(il,1,1), 1, turbxi, ie,

tag_turb, visturb(il+1,1,1), 1, turbxi, ie,

tag_turb,mpi_comm_world, status, ierr)

Here ie is rank of its right neighbor process. tag_turb is an integer tag, which uniquely

marks the current message when combined with the source or target process rank. This

routine call exchanges visturb between its right surface and the left surface of its right
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neighboring process. Starting from the memory location of visturb(il,1,1), a data

type turbxi is sent to process ie. In the mean time, another phantom layer data type

starting from visturb(il+1,1,1) is receiving data from process ie. The routine call

returns its status to an integer variable status. The similar routine calls are made on the

other 5 surface of the current sub-domain to finish all necessary boundary data exchange.

MPI environment finalization

When the computation iteration is finished, the MPI execution environment is finally ter-

minated by the following MPI routine call.

call mpi_finalize(ierr)



Appendix B

k s ω Turbulence Model Implementation

Even though the two-equation k � ω turbulence model of Wilcox [59] is not used in the

current work for turbulence modeling, efforts have been made to add this function as an

option to the solver for future application.

This two-equation model includes one equation for the turbulent kinetic energy k and

a second equation for the specific turbulent dissipation rate (or turbulent frequency) ω .

Different from the zero-equation Baldwin-Lomax model, the turbulent viscosity is deter-

mined by the turbulent kinetic energy k and the turbulent dissipation rate ω . This removes

the implementation difficulties of the Baldwin-Lomax model in 3D and complex geometry

conditions.

The two equations for k and ω are expressed in the Favre-averaged form as,

∂ 
 ρ̄ k̃ �
∂ t

	 ∂
∂x j

 ρ̄ ũ jk̃ ! � ∂
∂x j

� 
 µ 	 σ * µt � ∂ k̃
∂x j � 	 P � β * ρ̄ω̃ k̃ (B.1)

∂ 
 ρ̄ω̃ �
∂ t

	 ∂
∂x j

 ρ̄ ũ jω̃ ! � ∂
∂x j

��
 µ 	 σ µt � ∂ω̃
∂x j � 	 α

ω̃
k̃

P � βρ̄ω̃2 (B.2)

where the generation of turbulent energy P is,

P � , 2µt ( Si j
� 1

3
∂ ũk
∂xk

δi j ) � 2
3

ρkδi j
. ∂ ũi

∂x j
(B.3)
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The constants used for the two equations are,

α � 5
9
� β � 3

40
� β * � 9

100
� σ � 1

2
� σ * � 1

2

The turbulent viscosity is therefore calculated as,

µt � ρ
k
ω

(B.4)

The non-dimensional k * and ω * are defined as,

k * � k
U2

∞
(B.5)

ω * � ω
U∞ � L (B.6)

The normalized equations for k * and ω * are,

∂ 
 ρ * k * �
∂ t * 	 ∂

∂x * j � ρu * jk * � � 1
ReL

∂
∂x * j ��
 µ *Y	 ReLσ * µ *t � ∂k *

∂x * j � 	 Pk
� β * ρ * ω * k * (B.7)

∂ 
 ρ * ω * �
∂ t * 	 ∂

∂x * j � ρu * jω * � � 1
ReL

∂
∂x * j �t
 µ *+	 ReLσ µ *t � ∂ω *

∂x * j � 	 α
ω *
k * Pk

� βρ * ω * 2 (B.8)

Eqs. (B.7) and (B.8) are then added to the governing equations (2.34), (2.35) and (2.36).

The total stress in the momentum equation (2.35) and energy equation (2.36) is updated to

include the additional turbulent kinetic energy k,

τ *ik � 
 µ *d	 µ *t ReL � ��� ∂u *i
∂x *k 	 ∂u *k

∂x *i � � 2
3

δik

∂u * j
∂x * j � � 2

3
ReLρ * k * δi j (B.9)

The governing equations with the k � ω turbulence model are finally written in an in-

tegral vector form similar to Eq. (2.69). Drop the superscript asterisk for clarity. The

conservative variable vector U, inviscid flux E, F, G, viscous flux R, S, T and the source
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term D are expressed as the following,

U �
/00000000000000001

ρ

ρu

ρv

ρw

ρe

ρk

ρω

2 33333333333333335
(B.10)

E �
/00000000000000001

ρU

ρuU 	 lx p

ρvU 	 ly p

ρwU 	 lz p
 ρe 	 p � U
ρkU

ρωU

2 33333333333333335
� F �

/00000000000000001
ρV

ρuV 	 mx p

ρvV 	 my p

ρwV 	 mz p
 ρe 	 p � V
ρkV

ρωV

2 33333333333333335
� G �

/00000000000000001
ρW

ρuW 	 nx p

ρvW 	 ny p

ρwW 	 nz p
 ρe 	 p � W
ρkW

ρωW

2 33333333333333335
(B.11)

R �
/00000000000000001

0

lkτxk

lkτyk

lkτzk

lkβk

lkkk

lkωk

2 33333333333333335
� S �

/00000000000000001
0

mkτxk

mkτyk

mkτzk

mkβk

mkkk

mkωk

2 33333333333333335
� T �

/00000000000000001
0

nkτxk

nkτyk

nkτzk

nkβk

nkkk

nkωk

2 33333333333333335
(B.12)
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D �
/000000000000000001

0

0

0

0

0

P � β * ρωk

α
ω
k

P � βρω2

24333333333333333335
(B.13)

The stress components are expressed as the following.

τxx � 4
3

ατ  uξ lx 	 uη mx 	 uζ nx ! � 2
3

ρk� 2
3

ατ  vξ ly 	 vη my 	 vζ ny 	 wξ lz 	 wη mz 	 wζ nz ! (B.14)

τyy � 4
3

ατ  vξ ly 	 vη my 	 vζ ny ! � 2
3

ρk� 2
3

ατ  uξ lx 	 uη mx 	 uζ nx 	 wξ lz 	 wη mz 	 wζ nz ! (B.15)

τzz � 4
3

ατ  wξ lz 	 wη mz 	 wζ nz ! � 2
3

ρk� 2
3

ατ  uξ lx 	 uη mx 	 uζ nx 	 vξ ly 	 vη my 	 vζ ny ! (B.16)

τxy � ατ $ uξ ly 	 uηmy 	 uζ zy 	 vξ lx 	 vη mx 	 vζ zx
& (B.17)

τxz � ατ $ uξ lz 	 uη mz 	 uζ zz 	 wξ lx 	 wη mx 	 wζ zx
& (B.18)
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τyz � ατ $ vξ lz 	 vη mz 	 vζ zz 	 wξ ly 	 wη my 	 wζ zy
& (B.19)

where

ατ � J
ReL


 µ 	 µtReL � � 1
ReL∆V


 µ 	 µtReL � (B.20)

The coefficients βx, βy and βz are expressed as,

βx � uτxx 	 vτxy 	 wτxz � qx (B.21)

βy � uτxy 	 vτyy 	 wτyz � qy (B.22)

βz � uτxz 	 vτyz 	 wτzz � qz (B.23)

qx � � αq  Tξ lx 	 Tη mx 	 Tζ nx ! (B.24)

qy � � αq  Tξ ly 	 Tη my 	 Tζ ny ! (B.25)

qz � � αq  Tξ lz 	 Tη mz 	 Tζ nz ! (B.26)

where

αq � 1
 γ � 1 � M2
∞

J
ReL

( µ
Pr
	 µt

Prt
ReL ) � 1
 γ � 1 � M2

∞

1
∆V ReL

( µ
Pr
	 µt

Prt
ReL ) (B.27)

The spatial derivatives of the turbulent kinetic energy k are expressed as,
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kx � αk  kξ lx 	 kη mx 	 kζ nx ! (B.28)

ky � αk  kξ ly 	 kη my 	 kζ ny ! (B.29)

kz � αk  kξ lz 	 kη mz 	 kζ nz ! (B.30)

where

αk � J
ReL


 µ 	 σ * µtReL � � 1
∆V ReL


 µ 	 σ * µtReL � (B.31)

The spatial derivatives of the turbulent dissipation rate ω are expressed as,

ωx � αω  ωξ lx 	 ωη mx 	 ωζ nx ! (B.32)

ωy � αω  ωξ ly 	 ωη my 	 ωζ ny ! (B.33)

ωz � αω  ωξ lz 	 ωη mz 	 ωζ nz ! (B.34)

where

αω � J
ReL


 µ 	 σ µtReL � � 1
∆V ReL


 µ 	 σ µt ReL � (B.35)

The turbulent energy generation term P is expressed as,

P � τi j
∂ ui
∂ x j

� τxx
∂ u
∂ x

	 τyy
∂ v
∂ y

	 τzz
∂ w
∂ z

	 τxy ( ∂ u
∂ y

	 ∂ v
∂ x )	 τxz ( ∂ u

∂ z
	 ∂ w

∂ x ) 	 τyz ( ∂ v
∂ z

	 ∂ w
∂ y ) (B.36)

where
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∂ ui
∂ x j

� J ( ∂ ui
∂ ξ

lx j
	 ∂ ui

∂ η
mx j

	 ∂ ui
∂ ζ

nx j )� 1
∆V

( ∂ ui
∂ ξ

lx j
	 ∂ ui

∂ η
mx j

	 ∂ ui
∂ ζ

nx j ) (B.37)

The characteristics of the governing equations are similar to those described in chap-

ter 3. Take the inviscid flux E in ξ direction as example, the Jacobian matrix is expressed

as,

A � ∂E
∂U �ABBBBBBBBBBBBBBBBC

0 lx ly lz 0 0 0� uU �vu γ � 1 w lxq U �vu 2 � γ w lxu lyu � u γ � 1 w lxv lzu � u γ � 1 w lxw u γ � 1 w lx 0 0� vU �vu γ � 1 w lyq lxv � u γ � 1 w lyu U �xu 2 � γ w lyv lzv � u γ � 1 w lyw u γ � 1 w ly 0 0� wU �xu γ � 1 w lzq lxw � u γ � 1 w lzu lyw � u γ � 1 w lzv U �vu 2 � γ w lzw u γ � 1 w lz 0 0

a51 a52 a53 a54 γU 0 0� kU lxk lyk lzk 0 U 0� ωU lxω lyω lzω 0 0 U

F GGGGGGGGGGGGGGGGH
(B.38)

where a51, a52, a53, a54 and q have same formulation as Eqs. (3.2) through (3.6).

The eigenvalues of matrix A are,

λ1 � U 	 C (B.39)

λ2 � U � C (B.40)

λ3 � 7 � U (B.41)

The eigenvalue matrix is,
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Λ � ABBBC λ1 0
. . .

0 λ7

F GGGH �
ABBBBBBBBBBBBBBBBC

U 	 C

U � C 0

U

U

U

0 U

U

F GGGGGGGGGGGGGGGGH
(B.42)

The left eigenvector matrix is,

L �
ABBBBBBBBBBBBBBBBBBC

q � cÛ
γ � 1

� u 	 cl̂x
γ � 1

� v 	 cl̂y
γ � 1

� w 	 cl̂z
γ � 1

1 0 0

q 	 cÛ
γ � 1

� u � cl̂x
γ � 1

� v � cl̂y
γ � 1

� w � cl̂z
γ � 1

1 0 0� V̂ m̂x m̂y m̂z 0 0 0� Ŵ n̂x n̂y n̂z 0 0 0

q � h � u � v � w 1 0 0� k 0 0 0 0 1 0� ω 0 0 0 0 0 1

F GGGGGGGGGGGGGGGGGGH
(B.43)

The right eigenvector matrix is,
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R �
ABBBBBBBBBBBBBBBBBBBC

1
2h

1
2h

0 0 � 1
h

0 0

u 	 cl̂x
2h

u � cl̂x
2h

m̂x n̂x � u
h

0 0

v 	 cl̂y
2h

v � cl̂y
2h

m̂y n̂y � v
h

0 0

w 	 cl̂z
2h

w � cl̂z
2h

m̂z n̂z � w
h

0 0

cÛ 	 H
2h

� cÛ 	 H
2h

V̂ Ŵ � q
h

0 0
k

2h
k

2h
0 0 � k

h
1 0

ω
2h

ω
2h

0 0 � ω
h

0 1

F GGGGGGGGGGGGGGGGGGGH
(B.44)

The coefficients in the above equations are defined in Chapter 3.



Appendix C

RANS3D Solver

C.1 Flowchart

The RANS3D solver flowchart is shown in Fig. C.1. The MPI implementation is also

marked along the main program. The main program is made up with 2 layers of iterations.

The outer layer iteration works on the physical time, and the total step number is “nstep”.

The inner iteration works on the pseudo time and is only needed by the dual time stepping

method. The solver is programmed using dynamic memory allocation. When the program

starts, the dimension parameters are read and the variables arrays will be allocated with

appropriate size. The parameters to control the program flow are the following.

moving This is the switch parameter for moving grid system. The moving grid system

is turned off when moving=0. moving=1 is for forced moving and moving=2 is for

induced moving.

unidt This is the switch parameter for local time step. When unidt=1, a uniform time step

is used for the whole computation domain. When unidt=0, the local time step is used.

dual_t This controls the dual time stepping method. When dual_t=0, the dual time step-

ping is turned off for steady state calculation. The inner iteration total step number

“tsteps” is set to 1. The dual time stepping is turned on when dual_t=1 for unsteady

201
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calculation. The option dual_t=2 is for unsteady calculation without dual time step-

ping. The physical time is precisely marched in unsteady calculations. Therefore,

the local time stepping is turned off when dual_t=2.

strtp This parameter controls the structural type in the fluid-interaction calculation. The

currently available options are 1 for cylinder, 2 for single airfoil and 3 for oscillating

cascade.

C.2 Code List

The subroutines and functions used in the latest RANS3D solver version 4 are listed as the

following.

BLOCK SUBROUTINE block.f
Solves block tridiagonal system.
call: DGETRF, DGETRI

BOUNDARY SUBROUTINE boundary.f
Boundary condition for viscous terms.
call: SURFACE

BOUND_INVISCID SUBROUTINE bound_inviscid.f
Boundary condition for inviscid terms.

CDLTJ SUBROUTINE cdltj.f
Calculate the drag, lift and torque coefficients during run time.

COMPUTE_QT SUBROUTINE compute_qt.f
Compute moving grid velocity at each computation cell center.
call: SPVEL

COMPUTE_SOURCE SUBROUTINE compute_source.f
Compute k-omega turbulence model source term.
call: METRIC_ALL

CROSS_PRODUCT SUBROUTINE yplus.f
Calculate the the cross product of two vectors.

DERIVATIVE SUBROUTINE derivative.f
Take derivative using 2nd order polynomial method.
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Figure C.1: RANS3D solver flowchart
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DGEMM SUBROUTINE block.f
call: XERBLA

DGEMV SUBROUTINE block.f
call: XERBLA

DGER SUBROUTINE block.f
call: XERBLA

DGETF2 SUBROUTINE block.f
call: DGER, XERBLA

DGETRF SUBROUTINE block.f
call: DGEMM, DGETF2, DLASWP, DTRSM, XERBLA

DGETRI SUBROUTINE block.f
call: DTRSM, DTRTRI, XERBLA

DISTANCE SUBROUTINE distance.f
Compute the distance from inner cell to wall, used for turbulence viscosity.

DISTOPLANE FUNCTION yplus.f
Compute the distance from an inner grid point to boundary surface.
call: CROSS_PRODUCT

DLASWP SUBROUTINE block.f

DSCAL SUBROUTINE block.f
Scales a vector by a constant. Uses unrolled loops for increment equal to one.

DSWAP SUBROUTINE block.f
Interchanges two vectors. Uses unrolled loops for increments equal one.

DTRMM SUBROUTINE block.f
call: XERBLA

DTRMV SUBROUTINE block.f
call: XERBLA

DTRSM SUBROUTINE block.f
call: XERBLA

DTRTI2 SUBROUTINE block.f
call: DSCAL, DTRMV, XERBLA

DTRTRI SUBROUTINE block.f
call: DTRMM, DTRSM, DTRTI2, XERBLA

EXCHANGE_DT SUBROUTINE mpi_exchange.f
Exchange locally determined time step information in parallel computation.
call: MPI_RECV, MPI_SEND
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EXCHANGE_QT SUBROUTINE mpi_exchange.f
Communication for moving grid information.
call: MPI_RECV, MPI_SEND, MPI_SENDRECV

EXCHANGE_Q_RES SUBROUTINE mpi_exchange.f
Communication for primitive variables and residual information.
call: MPI_RECV, MPI_SEND, MPI_SENDRECV

EXCHANGE_VISTURB SUBROUTINE mpi_exchange.f
Communication for turbulence viscosity.
call: MPI_SENDRECV

GAUSS_SEIDEL SUBROUTINE strmodel.f
This subroutine is used to solve linear system by Gauss Seidel iteration.

GDSN SUBROUTINE gdsn.f
Generate dsn() & sn() in the way, the clustering is at the bottom.

INITIAL SUBROUTINE initial.f
Read rstart to initialize flowfield.

INTEGRATE_ALL SUBROUTINE integrate_all.f
Integrates equations for one time step from time level "n" to time level "n+1".
call: EXCHANGE_DT, INVERT, NEGATIVE, OMESH_PERI, RHSIDE,
TIMESTEP, UPDATERK, URSN

INV3 SUBROUTINE accessory.f
Subroutine for rank-3 matrix inverse.

INVERT SUBROUTINE invert.f
Defines and solves the linear system for artificial-factorization.
call: BLOCK, LHS_MATRIX

INVSID_FLUX SUBROUTINE invsid_flux.f
Calculate the inviscid flux.
call: ROE_MATRIX, VANLEER_HANEL_FLUX, VAN_LEER_FLUX

KW_WALL SUBROUTINE kw_wall.f
Wall treatment calculation and its influence on RHS matrix. More treatment about
lhs matrix is applied in matrix_bnd.
call: METRIC_ALL, WALL_FUNC

LHS_MATRIX SUBROUTINE lhs_matrix.f
Calculate the LHS matrices.
call: BOUND_INVISCID, MATRIX_BND, METRIC,
RECONSTRUCT, ROE_MATRIX, VAN_LEER_MATRIX, ZHA_MATRIX
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LUDECO SUBROUTINE pbtrip.f
Calculate L-U decomposition of a given matrix A and store result in A (no pivoting
strategy is employed).

LUSOLV SUBROUTINE pbtrip.f
Solve linear algebraic system of equations A*C=B and store results in vector C. Ma-
trix A is input in L-U decomposition form (no pivoting strategy has been employed
to compute the L-U decomposition of the matrix a).

MAIN MAIN PROGRAM main.f
Solver main program.
call: EXCHANGE_Q_RES, EXCHANGE_VISTURB, INITIAL,
INTEGRATE_ALL, MOVING_GRID, MPI_DATA_TYPE, MPI_FINAL,
MPI_INITIAL, OUTPUT, READ_PARA, RECORD_P, TURBULENCE,
VOLUME, WALL_VEL

MATRIX_BND SUBROUTINE matrix_bnd.f
Special boundary treatment for LHS matrices.

METRIC SUBROUTINE metric.f
Compute metrics on xi, eta or zeta faces.

METRIC_ALL SUBROUTINE metric_all.f
Compute metrics for all cell centers in computation domain.

MOVING_GRID SUBROUTINE moving_grid.f
Update grid related info.
call: CDLTJ, COMPUTE_QT, EXCHANGE_QT, MVGRID,
MVGRID_OSC_CASCADE, STRUCTURE_PARA, VOLUME, WALL_VEL

MPI_DATA_TYPE SUBROUTINE mpi_exchange.f
Create derived data types for MPI communication.
call: MPI_TYPE_COMMIT, MPI_TYPE_CONTIGUOUS, MPI_TYPE_EXTENT,
MPI_TYPE_HVECTOR, MPI_TYPE_VECTOR

MPI_FINAL SUBROUTINE mpi_exchange.f
Terminate MPI environment.
call: MPI_FINALIZE

MPI_INITIAL SUBROUTINE mpi_exchange.f
call: MPI_COMM_RANK, MPI_COMM_SIZE, MPI_INIT

MULPUT SUBROUTINE pbtrip.f
Multiply a vector B by a matrix A. Subtract result from another vector C and store
result in C. Vector C is overwritten.

MVGRID SUBROUTINE mvgrid.f
Update the grid points at each time step.
call: GDSN
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MVGRID_OSC_CASCADE SUBROUTINE mvgrid_osc_cascade.f
Update oscillating blade mesh information.

NEGATIVE SUBROUTINE negative.f
Checks for negative density, pressure and temperature.

OMESH_BND SUBROUTINE omesh_bnd.f
Find match point for o-mesh periodic boundary condition.

OMESH_PERI SUBROUTINE omesh_peri.f
O-type periodic BC, q value is assigned to the ghost cells from the matched points.
call: OMESH_BND

OUTPUT SUBROUTINE output.f
Write boundary conditions, mesh and flowfield variables into a file.

PBTRIP SUBROUTINE pbtrip.f
Solve periodic block tridiagonal system of equations without pivoting strategy. Each
block matrix may be of dimension n with n any number greater than 1.
call: LUDECO, LUSOLV, MULPUT

PRINT_UNSTEADY SUBROUTINE print_unsteady.f
Record necessary instantaneous unsteady variables for postprocessing.

READ_PARA SUBROUTINE read_para.f
Read parameters in datain.

RECONSTRUCT SUBROUTINE reconstruct.f
Linear reconstruction to the cell faces using conservative variables.

RECORD_P SUBROUTINE record_p.f
Record pressure history for oscillating cascade.

RHSIDE SUBROUTINE rhside.f
Computes right-hand-side of the linear system and stores in array rhs.
call: BOUNDARY, BOUND_INVISCID, INVSID_FLUX, KW_WALL,
METRIC, RECONSTRUCT, SOURCE

ROE_MATRIX SUBROUTINE roe_matrix.f
Compute Roe matrix.

SAVE_MESH SUBROUTINE save_mesh.f
Save mesh information of the previous time step. Compute boundary velocity.

SOURCE SUBROUTINE source.f
Calculate the source term due to the geometric conservation law.

SPLINE SUBROUTINE spline.f
Interpolation using spline method.
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SPVEL SUBROUTINE spvel.f
Calculate the grid velocity due to the motion of moving grid.

STRMODEL SUBROUTINE strmodel.f
Solve the governing equations for two-degree-of-freedom model.
call: GAUSS_SEIDEL

STRUCTURE_PARA SUBROUTINE structure_para.f
Compute structure parameters.
call: STRMODEL

SURFACE SUBROUTINE surface.f
Computes velocity components and static temperature at fictitious cells.

SYSTIME FUNCTION accessory.f
Obtain system time and output to easy-to-read format.
call: DATE_AND_TIME

TIMESTEP SUBROUTINE timestep.f
Calculate local time step on each cell.
call: METRIC

TURBULENCE SUBROUTINE turbulence.f
Compute turbulence viscosity.
call: DISTANCE, METRIC_ALL, TURB_LINE

TURBULENCEN SUBROUTINE turbulencen.f
Compute turbulence viscosity in the second way.
call: VORTM

TURB_LINE SUBROUTINE turb_line.f
Compute B_L turbulent viscosity along a line normal to wall.

UNSTEADY SUBROUTINE unsteady.f
Record custom unsteady parameters.
call: DERIVATIVE, SPLINE

UPDATERK SUBROUTINE updaterk.f
MPI communication for RK method.
call: MPI_SENDRECV

URSN SUBROUTINE ursn.f
Use Upwind Relaxation Sweeping(URS) with Gauss-Seidel to invert the implicit
LHS.
call: BLOCK, LHS_MATRIX, PBTRIP

VANLEER_HANEL_FLUX SUBROUTINE vanleer_hanel_flux.f
Calculate van Leer-Hänel flux vector splitting at subsonic.
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VAN_LEER_FLUX SUBROUTINE van_leer_flux.f
Calculate van Leer flux vector splitting at subsonic.

VAN_LEER_MATRIX SUBROUTINE van_leer_matrix.f
Calculate LHS matrix for van Leer flux vector splitting at subsonic.

VOLUME SUBROUTINE volume.f
Compute volume.

VORTM SUBROUTINE vortm.f
Calculate the vorticity at the center of each cell.

WALL_FUNC SUBROUTINE wall_func.f
Wall treatment calculation and its influence on rhs matrix.

WALL_VEL SUBROUTINE wall_vel.f
Compute wall boundary velocity for moving grid.

XERBLA SUBROUTINE block.f

YPLUS SUBROUTINE yplus.f
Calculate yplus of the first cell center in wall region.

ZHA_MATRIX SUBROUTINE zha_matrix.f
Compute Zha matrix, dhat_l and dhat_r.



Appendix D

Publications

Journal Papers
1. Hu, Z. and Zha, G., “Calculations of 3D Compressible Flows Using an Efficient Low

Diffusion Upwind Scheme,” International Journal for Numerical Methods in Fluids,
Vol. 107, 2005, pp. 253–269.

2. Zha, G. and Hu, Z., “Calculation of Transonic Internal Flows Using an Efficient
High-Resolution Upwind Scheme,” AIAA Journal, Vol. 42, No. 2, 2004, pp. 205–
214, also AIAA Paper 2004-1097.

Conference Papers
1. Hu, Z., Zha, G., and Lepicovsky, J., “Numerical Study on Flow Separation of a

Transonic Cascade,” AIAA 42nd Aerospace Sciences Meeting and Exhibit, Reno,
Nevada, January 5-8 2004, AIAA Paper 2004–0199.

2. Hu, Z., and Zha., Z., “Simulation of 3D Flows of Propulsion Systems Using an
Efficient Low Diffusion E-CUSP Upwind Scheme,” 40th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, July 2004, AIAA
Paper 2004–4082.

3. Hu, Z., Zha, G., and Lepicovsky, J., “Numerical Study of a Cascade Unsteady Sepa-
ration Flow,” ASME Turbo Expo 2004, Power for Land, Sea and Air, Vienna, Aus-
tria, June 14–17 2004, ASME Paper GT2004-53195.

4. Chen, X., Zha, G., and Hu, Z., “Numerical Simulation of Flow Induced Vibration
Based on Fully Coupled Fluid-Structural Interactions,” 34th AIAA Fluid Dynamics
Conference and Exhibit, Portland, Oregon, June 28–July 1 2004, AIAA Paper 2004-
2240.

5. Chen, X., Zha, G., Hu, Z., and Yang, M., “Flutter Prediction Based on Fully Cou-
pled Fluid-Structural Interactions,” 9th National Turbine Engine High Cycle Fatigue
Conference, March 16–19 2004.
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