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The purpose of this research is to develop high fidelity numerical methods to inves-

tigate the complex aeroelasticity fluid-structural problems of aircraft and aircraft engine

turbomachinery.

Unsteady 3D compressible Navier-Stokes equations in generalized coordinates are solved

to simulate the complex fluid dynamic problems in aeroelasticity. An efficient and low dif-

fusion E-CUSP (LDE) scheme designed to minimize numerical dissipation is used as a

Riemann solver to capture shock waves in transonic and supersonic flows. An improved

hybrid turbulence modeling, delayed detached eddy simulation (DDES), is implemented

to simulate shock induced separation and rotating stall flows. High order accuracy (3rd

and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and

a conservative 2nd and 4th order viscous flux differencing are employed. To resolve the

nonlinear interaction between flow and vibrating blade structures, a fully coupled fluid-

structure interaction (FSI) procedure that solves the structural modal equations and time

accurate Navier-Stokes equations simultaneously is adopted. A rotor/stator sliding interpo-



lation technique is developed to accurately capture the blade rows interaction at the inter-

face with general grid distribution. Phase lag boundary conditions (BC) based on the time

shift (direct store) method and the Fourier series phase lag BC are applied to consider the

effect of phase difference for a sector of annulus simulation.

Extensive validations are conducted to demonstrate high accuracy and robustness of

the high fidelity FSI methodology. The accuracy and robustness of RANS, URANS and

DDES turbulence models with high order schemes for predicting the lift and drag of the

DLR-F6 configuration are verified. The DDES predicts the drag very well whereas the

URANS model significantly over predicts the drag. DDES of a finned projectile base flows

is conducted to further validate the high fidelity methods with vortical flow. The DDES is

demonstrated to be superior to the URANS for the projectile flow prediction due to more

accurate base vortex structures and pressure prediction.

DDES of a 3D transonic wing flutter is validated with AGARD Wing 445.6 aeroelas-

ticity experiment at free stream Mach number varied from subsonic to supersonic. The

predicted flutter boundary at different free stream Mach number including the sonic dip

achieves very good agreement with the experiment. In particular, the predicted flutter

boundaries at the supersonic conditions match the experiment accurately. The mechanism

of sonic dip is investigated. It is observed that the amplitude ratio of first bending mode to

the second torsion mode is increased dramatically when the sonic dip occurs with a reversed

trend to the flutter speed index boundary. The reduced torsional amplitude is attributed to

the decreased pitching moment, which appears to be caused by the lift generation shifted

toward mid-chord location.

Simulation of supersonic fluid-structural interaction of a flat panel is performed by



using DDES with high order shock capturing scheme. The panel vibration induced by the

shock boundary layer interaction is well resolved by the high fidelity method. The dominant

panel response agrees well with the experiment in terms of the mean panel displacement

and frequency.

The DDES methodology is used to investigate the stall inception of NASA Stage 35

compressor. The process of rotating stall is compared between the results using both

URANS and DDES with full annulus. The stall process begins with spike inception and

develops to full stall. The numbers of stall cell, and the size and propagating speed of the

stall cells are well captured by both URANS and DDES. Two stall cells with 42% rotor

rotating speed are resolved by DDES and one stall cell with 90% rotor rotating speed by

URANS. It is still not conclusive which method is more accurate since there is no exper-

imental data to compare, but the DDES does show more realistic vortical turbulence with

more small scale structures.

The non-synchronous vibration (NSV) of a high speed 1-1/2 stage axial compressor

is investigated by using rigid blade and vibrating blade with fluid-structural interaction.

An interpolation sliding boundary condition is used for the rotor-stator interaction. The

URANS simulation with rigid blades shows that the leading edge(LE) circumferentially

traveling vortices, roughly above 80% rotor span, travel backwards relative to the rotor

rotation and cause an excitation with the frequency agreeing with the measured NSV fre-

quency. The predicted excitation frequency of the traveling vortices in the rigid blade

simulation is a non-engine order frequency of 2603 Hz, which agrees very well with the

rig measured frequency of 2600 Hz. For the FSI simulation, the results show that there

exist two dominant frequencies in the spectrum of the blade vibration. The lower dominant



frequency is close to the first bending mode. The higher dominant frequency close to the

first torsional mode agrees very well with the measured NSV frequency. To investigate

whether the NSV is caused by flow excitation or by flow-structure locked-in phenomenon,

the rotating speed is varied within a small RPM range, in which the rig test detected the

NSV. The unsteady flows with rigid blades are simulated first at several RPMs. A dom-

inant excitation NSV frequency caused by the circumferentially traveling tip vortices are

captured. The simulation then switches to fluid structure interaction that allows the blades

to vibrate freely. The simulation indicates that the structure response follows the frequency

of the flow excitations that exist with the rigid blades. At least under the present simu-

lated conditions, the NSV does not appear to be a lock-in phenomenon, which has the flow

frequency locks in with the structure frequency.

Overall, the high fidelity FSI methodology developed in this thesis for aircraft and

engine fan/compressor aeroelasticity simulation is demonstrated to be accurate and robust.

It has advanced the forefront of the state of the art.
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Chapter 1

Introduction

1.1 Background

Fluid-structure interaction (FSI) studies the multiphysics involving the interactions be-

tween flexible and moving structures and a external or internal flows. FSI exists in many

engineering fields. For example, the interaction of wind and tall buildings and bridges, fluid

flowing through flexible pipes, flow induced vibration on aircraft wing and turbomachinery

blades, and so on. The focus of this thesis will be on the aeroelastic problems that occur in

aircraft and aircraft engine turbomachinery.

Aeroelasticity involves interactions among the inertial, elastic, and aerodynamic forces.

There are static and dynamic aeroelastic problems. Static aeroelasticity covers the inter-

action between aerodynamic force and elastic force. And dynamic aeroelasticity studies

the interaction among the aerodynamic, elastic, and inertial forces. Examples of dynamic

aeroelastic phenomena are forced response, flutter and buffet.

1
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1.1.1 Aircraft Dynamic Aeroelasticity

Aircraft dynamic aeroelasticity is concerned with the oscillatory effects of the interactions

between air flow and aircraft wing, control surfaces and the skin of fuselage. Flutter and

buffeting are the common dynamic aeroelastic phenomena. This thesis is focused on the

former. Buffeting is a high-frequency instability, occurring because of the interaction of

airflow separation or shock wave oscillation.

Flutter is a self-excited aeroelastic instability of an elastic structure in a fluid flow. Flut-

ter occurs when the structural damping is insufficient to damped the energy absorbed from

air flow and can lead to structural failure. Flutter may happen at subsonic and supersonic

flows.

Flutter in transonic flow regime is of significant interest in aircraft wing and control sur-

face design since modern transport aircraft mostly cruise in transonic Mach number regime.

However, the presence of shock waves on the wing surface introduces strong aerodynamic

non-linearity, which posts great challenge on the aeroelastic analysis and prediction of flut-

ter boundary. The transonic dip phenomena in transonic flutter boundary with the flutter

speed index suddenly dropping at sonic speed are not fully understood. It may be attributed

to the shift in dynamic center of pressure associated with the shock motion in transonic flow

regime [3]. Efforts of both experiment and numerical simulation are still needed to under-

stand better the sonic dip mechanism.

Flutter may also occur in modern high performance compressor and turbine stages due

to the load with increased high pressure ratio. The flow fields in transonic rotors are domi-

nated by shock waves that manifests itself in the blade passage. For turbomachinery blade

rows, flutter are observed primarily in a single natural mode, with oscillating shock waves
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on the blade surfaces being one of the primary sources for instability. The shock waves

could have a stabilizing or destabilizing effect on blade stability.

Supersonic flutter is one of the major structural issues for high speed airplanes, aerospace

vehicles and rockets. The surface skin of a flight vehicle in supersonic flow may experience

a sudden structural fatigue failure resulting in the loss of the vehicle. The determination of

flutter stability boundaries is essential to avoid such losses.

Accurate prediction of dynamic aeroelasticity remains very challenging since it in-

volves both aerodynamics and structural dynamics. The interaction between flow and elas-

tic structure is inherently unsteady and nonlinear. For most dynamic aeroelastic problems,

it is impossible to obtain analytical solutions. On the other hand, wind tunnel test or flight

flutter testing is very expensive and time consuming. Thus, the development of efficient

and accurate prediction methods are needed to save the cost of flight test.

Computational fluid dynamics (CFD) has been extensively developed and used for pre-

dicting aeroelasticity in the past several decades. However, high fidelity numerical simu-

lation (HFNS) of dynamic aeroelastic problem is arduous since they involve both aerody-

namics and structural dynamics. There are complex unsteady flow phenomena such as flow

separation and shock wave/turbulent boundary layer interaction(STBLI). For the structure

at high speed such as supersonic or hypersonic flow, the skin temperature could be suf-

ficiently high to cause large nonlinear deflection. The numerical difficulties maybe the

reason that currently there are no benchmarking "standards" for validating computational

aeroelasticity codes at high speed.

Methods in HFNS must include models that are capable of predicting strong nonlinear

and viscous flow phenomena encountered at various flight speeds with minimal errors in
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fluid structure coupling.

1.1.2 Turbomachinery Dynamic Aeroelasticity

Modern aircraft engines also have serious aeroelastic (aeromechanic) problems. The de-

mands of high performance and lowweight have pushed the turbomachinery towards higher

aerodynamic loading, lower blade stiffness, closer blade row spacing and higher rotational

speeds. These factors increase the susceptibility of flow-induced blade vibrations which

have negative impacts on engine readiness and operating costs [4–6].

According to U.S. Air Force, 55% of USAF fighter jet engine parts are mishaped by

high cyle fatigue (HCF) [7], which is a serious problem in aircraft engine design and devel-

opment. HCF of turbomachinery blades may be caused by such as flutter, forced response

vibration, non-synchronous vibration(NSV), separation flow vibration, and acoustic reso-

nance.

Classical blade vibrations are flutter and forced response. Among those vibration phe-

nomena, flutter is the most dangerous aeroelastic problems. Turbomachinery flutter is sim-

ilar to wing flutter in that both are self-excited aeroelastic instability. It occurs when the

blade structure damping is insufficient to damp out the energy absorbed from the unsteady

flow in the turbomachinery. Blade flutter is observed primarily in the first natural mode

with several traveling waves [8].

The shock instabilities, rotating stall and even choking are know as main sources that

trigger flutter in a transonic fan/compressor of aircraft engines [8–14]. The type of flutter in

a compressor depends on the point of operation on the characteristic compressor map. Var-

ious types of turbomachinery flutter have been observed, such as unstall supersonic flutter,
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subsonic/transonic stall flutter, supersonic stall flutter, and choke flutter. The transonic stall

flutter will be studied in this thesis.

Transonic stall flutter occurs at near stall condition where the flow incidence angles are

high. Stall flutter is one of the most difficult aeroelastic problems to predict in turbomachin-

ery. There are complex flow phenomena, such as flow separation at the suction surface and

shock oscillation during stall flutter in transonic turbomachinery. Currently, the prediction

of stall flutter of turbomachinery blades are mostly based on low fidelity methods [8, 9].

The flow mechanism leading to stall flutter in transonic flutter is not fully understood yet.

Forced response are induced by blade row interaction or inlet distortion. The aero-

dynamic excitation frequencies are integer multiples of the wheel speed. When the blade

passing frequency is synchronous to system natural frequency, resonance may occur, which

would causes blades HCF failure. The Campbell diagram is used for aeroelastic prelimi-

nary design of turbomachinery blades to the potential resonance. The Campbell diagram is

a plot of blade natural frequencies and the various engine order lines with respect to the ro-

tor rotating speed. It is a good tool to clarify blade vibration terms used in aircraft engines.

If a vibration with a frequency with an integer multiple of the rotational speed, it is called

engine order vibration or synchronous vibration to the engine. Hence, the forced response

is engine order vibration. Flutter is usually low frequency close to the 1st eigen frequency

of the blade structure and non-synchronous to the engine order [15].

Recently, a less known aeroelastic vibration, non-synchronous vibration (NSV), was

studied by many people [16–22]. NSV is a non-engine order vibration and is usually

locked-on between two engine order lines with high frequency and amplitude enough to

cause high cycle fatigue (HCF), in which the stress level is over the material endurance
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limit due to unsteady aerodynamic excitation forces acting on the blades. NSV is usually

observed on the first stage rotor of a multistage high pressure compressor [16, 20]. Since

lack of understanding on NSV will increase cost and development time, many efforts have

been made by major engine manufacturers to investigate the mechanism behind NSV. In-

vestigation of the NSV mechanism is thus one of the purposes of this thesis.

Numerical simulations of FSI phenomena flutter, forced vibration, and NSV are very

challenging, because FSI problems involve both fluid dynamic, structure dynamic and their

coupling. The flows in the turbomachinery are three dimensional (3D), unsteady, highly

non-linear. Currently, there are few high fidelity methods to adequately resolve turbulence,

shock/turbulent boundary layer and fluid-structure interaction.

The highly non-linear nature of the transonic and supersonic flow results in a strong

couple of the structural and flow equations. Hence, those equations need to be solved

simultaneously so that the non-linear effects can be captured accurately, such as large vari-

ations of the aerodynamic forces due to the small blade vibration. However, most of FSI

simulation methods use a loosely coupled procedure [23–27], in which the equations for

fluid, structure and mesh deformation are solved sequentially, in an uncoupled mode. The

loosely coupled method is lack of convergence and incapable of predicting the non-linear

effects. Therefore, a tool that can capture the simultaneous fluid/structure interaction is

crucial in the design and analysis of aircraft engine fans/compressors. In this thesis, the

fully coupled FSI strategy [21, 28–31] is developed for turbomachinery.
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1.2 Turbulence Modeling

Turbulence modeling is critical for the prediction of aerodynamic forces in FSI simulation,

such as the viscous force. The commonly used models today are still the Reynolds averaged

Navier-Stokes(RANS) models, which is in general considered as inaccurate for predicting

the flow with large separations. RANS model treat large eddy structures as isotropic and

are not consistent with the physics. However, RANS models have their advantage of CPU

efficiency and can handle many engineering problems with calibrated models. However,

for high Reynolds number flows such as those of transonic wings and turbomachinery

blades, to resolve wall boundary layer, LES needs the CPU resource not much less than the

Direct Numerical Simulation(DNS). This makes the LES too expensive for fluid-structural

interaction unsteady calculations.

Hence, hybrid turbulence modeling methods, such as the Detached Eddy Simulation

(DES) suggested by suggested by Spalart et al. [32] is a very good balance between the

accuracy and CPU. In DES, RANS method is used within the wall boundary layer and LES

is used away from the wall surface boundary layer. By using the RANS model near walls,

the mesh size as well as the CPU time can be tremendously reduced. However, a defect of

the first generation DES model [32], DES97, has been also exposed. DES97 may behave

incorrectly and cause modeled stress depletion (MSD) in the regions of thick boundary

layers and shallow separation regions due to the grid spacing dependence [33]. Delayed

detached-eddy simulation (DDES) by Spalart [33] is an improved version of the DES97

model. With DDES, a blending function similar to the one used by Menter and Kuntz [34]

for the SST model is introduced to limit the length scale of DES97 to ensure the transition

of RANS to LES be independent of grid spacing. DDES is employed to simulate the FSI



8

problems in this thesis.

1.3 Objective

The objective of this research are to develop and adopt high fidelity numerical methods

for predicting and investigating complex aeroelastic problems in aircraft and multistage

fan/compressor. In order to fulfill the goal, the following tasks are achieved in this thesis:

• Investigate the physics of the unsteadiness caused by the shock, the shock/boundary

layer interaction.

• Study the shock wave effect on stall inception in a transonic compressor

• Simulate the flutter boundary transonic compressor stage

• Investigate the mechanism of sonic dip phenomenon for a transonic wing

• Develop tools for predicting supersonic panel flutter

• Further investigate the mechanism of non-synchronous vibration in turbomachinery

1.4 Strategy

The high fidelity numerical strategy for turbomachinery aeroelasticity is adopted and de-

veloped based on the following novel numerical methods.

1) Unsteady 3D compressible Navier-Stokes equations are solved with a system of 5

decoupled structure modal equations in a fully coupled manner. The low diffusion E-

CUSP scheme with a 5th order WENO reconstruction for the inviscid flux and a set of 2nd
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order central differencing for the viscous terms are used to accurately capture the shock

wave/turbulent boundary layer interaction of the vibrating wing and blades.

2) The fully coupled fluid/structure interaction approach and an efficient mesh deform-

ing technique are used in aeroelasticity simulations of aircraft and turbomachinery.

3) An advanced LES/RANS hybrid turbulence model, DDES suggested by Spalart et

al. [33] is employed for high fidelity aeroelasticity simulation.

4) A rotor/stator sliding interpolation BC is developed for multistage turbomachinery

simulation in order to resolve the wake propagation between blade rows.

5) A time shifted phase lag boundary condition instead of periodic boundary condition

is used in the turbomachinery simulations with a sector of geometry.

1.5 Outline of The Thesis

The overview of the numerical algorithms employed for aircraft and turbomachinery FSI

simulation are given in Chapter 2.

Non-inertial reference frame is adopted for both flow and structure governing equations.

The time accurate Navier-Stokes equations are derived in a rotating frame as the flow gov-

erning equations in Chapter 3. For the structure governing equations, the decoupled modal

equations are derived in the same rotating frame in Chapter 3.2.

In Chapter 4, the numerical methods are described including the implicit discretization

of the Navier-Stokes equations, the low diffusion E-cusp scheme as an accurate approxi-

mate Riemann solver, and the high order inviscid and viscous flux reconstruction schemes.

Validation studies on the DDES turbulence modeling method are given in Chapter 5 by
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the prediction of force and moment coefficients of wing body configuration and projectile.

The high fidelity FSI methodology is validated with of AGARD Wing flutter boundary

simulation in Chapter 6 and panel aeroelasticity in Chapter 7.

In Chapter 8, high fidelity simulations of stall inception for NASA Stage 35 are con-

ducted by using both DDES and URANS. The full annulus of the Stage 35 is simulated.

The detail process of rotating stall is captured. The stall flutter of NASA Stage 35 is also

simulated with both DDES and URANS with fully coupled FSI in Chapter 9.

In Chapter 10, investigation of non-synchronous vibration mechanism of a GE aircraft

engine axial compressor is conducted using the high fidelity FSI methodology developed

in this thesis.



Chapter 2

Literature Review

There are in general three methods to study aeroelasticity, including theoretical, numerical

simulation and measurement. The focus of this research is on the high fidelity methods for

aeroelasticity simulation. The state of the art with respect to the numerical simulations in

aircraft and turbomachinery aeroelasticity is reviewed in this chapter.

2.1 Wing Flutter and Panel Flutter

Among aeroelastic problems, flutter is the most dangerous vibration and should be con-

sidered in the early phase of aircraft aeroelasticity design. Experimental testing of aircraft

aeroelasticity is very expensive in the design phase. Therefore, tools for flutter prediction

are very important in aircraft design.

11
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2.1.1 Transonic Wing Flutter

Wing flutter may occur at any Mach number from subsonic to supersonic. There may be

complex flow phenomena such as flow separation and shock wave/turbulent boundary layer

interaction(STBLI) during flutter. Various flow models have been developed to predict the

flutter boundary of aircraft. The classical linear models [35] including piston theory and

full potential flow models are widely used in aeroelastic design for their advantage of com-

putational efficiency. The disadvantage of linear flow models is that they fail to accurately

capture the location and strength of local shock motion in transonic and supersonic regime.

To predict the transonic or supersonic flutter boundary with better accuracy, tools based

on nonlinear Euler equations have been developed. Bendiksen et al. [36] study the tran-

sonic flutter of typical section wing models by solving the Euler equation coupled with

a two degrees of freedom of structural dynamic equations. Reasonable flutter results are

obtained in the regions with no strong shock. Rausch et al. [37] predict flutter boundary of

a set of configurations by solving unsteady Euler aerodynamic equations on unstructured

grid. Good agreement with experiment is obtained in the predicted flutter boundary for

subsonic flow. However the predicted flutter characteristics in transonic regime are not sat-

isfactory. Since the viscous effect on these flutter boundary prediction is neglected, neither

potential flow model nor Euler equations are suitable for understanding the STBLI and the

mechanism that causes flutter.

Prananta et al. [38] report the results of aeroelastic simulations using the Euler and

Navier-Stokes solvers. Their calculations show that the viscous effect plays a very im-

portant role in determining the transonic dip and flutter boundary for a NACA64A010

airfoil. Lee-Rausch et al. [39] also study the effect of viscosity on the flutter boundary
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of AGARD wing 445.6 by comparing the Euler and Navier-Stokes results over a range of

Mach numbers from 0.499 to 1.14. Their calculation shows a significant viscous effect on

the supersonic flutter boundary. Viscous effects and the STBLI may induce flow separation

and shock wave oscillation that affect flutter speed. Isogai [40] considers that the drop of

transonic flutter boundary is due to the presence of part chord shock and its oscillation that

is not in phase with the airfoil motion. Bendiksen [3] attributes the sonic dip to the shock

motion transition from Tijdeman type A to type B [41] that throttles the aerodynamic work

done on the wing and forms single degree of freedom flutter occurred at transonic.

To understand the mechanism of the non-linear aeroelasticity behavior, high fidelity

solver based on Navier-Stokes equations coupled with the structural dynamic governing

equations is required. Computational methods using Reynolds Averaged Navier Stokes

(RANS) [42,43], large eddy simulation (LES) [44], and direct numerical simulation (DNS)

[42, 45] have been utilized to study the STBLI. DNS and LES provide better compari-

son with experimental results than RANS. Priebe et al [45] employed DNS to study the

STBLI on a ramp configuration. They demonstrate that the shock impingement amplifies

the pressure fluctuation and there are high-level, low-frequency (< 1000 Hz) vortex struc-

tures in the turbulent boundary layer. However, DNS and LES will not be feasible for high

Reynolds number aeroelastic problems for a long time due to the excessive computational

cost. On the other hand, RANS cannot accurately capture the shock oscillation due to the

interaction with the turbulent layer without shock unsteadiness correction [44].

The hybrid RANS/LES approach, Detached eddy simulation (DES) suggested by Spalart

[33], is developed for complex turbulence problems as a compromise between prediction

accuracy and CPU efficiency. In DES, a RANS model is used in the near wall regions
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to reduce the grid density, and the LES is used outside the near wall regions to deal with

massively separated flows. Spalart et al [33] suggested delayed DES(DDES) in 2006 to

overcome the modeled stress depletion(MSD) problem of the original DES when the mesh

is thin compared with boundary layer thickness. In DDES, a blending function similar to

the one used by Mentor and Kuntz [34] for the SST model is introduced to limit the length

scale of DES97 to ensure the transition of RANS to LES to be independent of grid spacing.

The other very important issue of FSI simulation is the artificial dissipation from the

CFD schemes, which affects the prediction of aerodynamic damping to the structure. It

includes the resolution of acoustic waves and high order mode of structure vibration with

high reduced frequency, which is a small scale wave phenomenon. Most of the current

CFD simulations for FSI use 2nd order schemes for the convective fluxes, which have high

numerical dissipation due to the upwinding requirement to capture shock waves. 120In this

thesis, the high order shock capturing schemes for FSI with 5th order weighted essentially

non-oscillatory (WENO) scheme for inviscid fluxes [29, 30, 46, 47] are employed.

The advantage of high order low diffusion schemes is demonstrated in the simulation

of the transonic NLR 7301 airfoil limited cycle oscillation (LCO). Since the LCO has bi-

furcation, some other research groups using 2nd order schemes only capture the amplitude

about 10 times higher than the measured one in wind tunnel. Their schemes tend to be too

diffusive to capture the LCO with the amplitude as small as 2/1000 of the airfoil chord.

The simulation of Wang et al [29, 30] of the present author’s group is the only one, and the

first one, that accurately captures the small LCO amplitude measured in the experiment.

Recently, Chen et al. [48] predict the transonic flutter boundary of AGARD wing 445.6

using delayed-detached-eddy simulation(DDES) [33]. In their study, time accurate Navier-
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Stokes equations are solved with a system of 5-decoupled structure modal equations in a

fully coupled manner [49, 50]. The computed transonic flutter boundary agrees very well

with the experiment. The same method was utilized by Im et al. in the author’s group [51]

to improve the prediction of the supersonic flutter boundary of the AGARD wing 445.6

model. Their results appear to be the first time that a numerical prediction of supersonic

flutter boundary matches with experiment accurately. However, the flutter mechanisms

in transonic and supersonic condition are not investigated in [48, 51]. Furthermore, the

complete AGARD wing 445.6 flutter boundary at different Mach numbers from subsonic

to supersonic is not simulated in their work.

2.1.2 Supersonic Panel Flutter

Supersonic panel flutter is a self-excited aeroelastic instability which typically have high

amplitude and may cause fatigue damage. Study of the supersonic panel flutter is very

important for supersonic/hypersonic vehicle design. However, high fidelity numerical sim-

ulation of supersonic panel flutter is very challenging due to the complex shock-turbulent

boundary layer interaction(STBLI). For the structure, the skin panel temperature could

reach several hundreds degree due to aerodynamic heating, which may lead to large deflec-

tion and the panel motion become non-linear.

The previous research on the prediction of panel flutter are mainly based on analytical

and experimental methods. The analytical methods include the governing partial differen-

tial equations (PDE) in conjunction with the Galerkin method [52] and the finite element

methods [53] for nonlinear supersonic panel flutter. The aerodynamic models used in those

methods are mainly linearized, such as linear piston and linearized potential flow model.
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However, linear aerodynamic models are difficult to capture the STBLI since this flow phe-

nomenon is non-linear and unsteady. The STBLI would result in an amplification of the

heating, the aeroacoustic loading, and flow separation. Priebe et al [45] employed direct nu-

merical simulation (DNS) to study the STBLI on a ramp configuration. They demonstrate

that the shock impingement amplifies the pressure fluctuation and there are high-level, low-

frequency (< 1000 Hz) vortex structures in the turbulent boundary layer. Although com-

putational method using Reynolds Averaged Navier Stokes (RANS) [42, 43], large eddy

simulation (LES) [44], and direct numerical simulation (DNS) [42, 45] have been utilized

to study the STBLI, few researches are focused specifically on the analysis of STBLIs on

panel aeroelasticity.

Crowell et al [54] developed a CFD-FEM based partitioned aerothermal solver, for

investigating the thermal response of surface panels subject to shock turbulent boundary

layer interactions (STBLIs). Their results show that a static approximation, in which the

flow is simulated a priori without consideration of the surface motion, significantly under

predicts the peak temperature rise and affects the length of the panel. Dechaumphai et

al [55] used 2D finite element fluid-thermal-structural solver to study hypersonic flow over

metallic thin panels in both aligned and inclined configurations with respect to the free

stream. Their results show that even very modest deformations alter flow features and

introduced shocks, expansions, and recirculation regions that significantly influenced the

heat load. However, their CFD-FEM solver are only implemented for two dimensional

problems in loosely coupled way. Gogulapati et al [56] studied the flow-structural response

of thin-gauge panels subject to shock impingement with steady CFD and reduced order of

FEM method. The unsteady pressure fluctuation on the panel surface are the surrogate of
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the steady CFD and empirical correlation. The computed dynamic panel displacements are

largely deviated from experiment up to a few orders of magnitude.

2.2 Turbomachinery Aeroelasticity

The focus of this research work on turbomachinery aeroelasticity is to develop and adopt

high fidelity CFD methodology for complex turbomachinery aeromechanical problems,

such as stall flutter and turbomachinery NSV. Hence, the achievements of turbomachinery

aeroelasticity using numerical simulation are reviewed in this section.

The numerical predictions of turbomachinery aeroelastic problems have been performed

for more than 5 decades. Excellent review of this field can be seen in a number of publica-

tions, such as the AGARD Manual on aeroelasticity in axial flow turbomachines [57], Un-

steady Aerodynamics and Aeroelasticity of Turbomachines [58, 59], and an IGTI Scholar

Paper by Srinivasan [15]. The early works [60] mostly adopted the analysis techniques

that are based on 2D, incompressible, and inviscid assumptions. One of the advantage of

the analysis methods is the computational cost is very low. Hence, the main parametric

variables that control the aeroelastic phenomena can be found efficiently and they are very

suitable for preliminary aeroelastic design of the blades.

However, transonic flutter near stall conditions in turbomachinery are highly unsteady,

non-linear and three dimensional, which include flow induced vibration, flow separation,

shock unsteadiness, shock wave/turbulent boundary interactions. Numerical methods with-

out considering the viscous effect are impossible to predict those complex flow phenomena

accurately. The driving mechanism of the stall flutter in transonic turbomachinery may var-
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ied between the large separation and shock wave oscillation. Lepicovsky et al. [61] shows

that the transonic stall flutter is triggered by the high frequency stall cell propagation in

separated area on the airfoil suction side. There are no shock waves at high subsonic inlet

Mach numbers (about 0.95) when transonic stall flutter occurred in their study [61]. Shwa

et al. [62] demonstrates that the energy from shock wave oscillations is not strong enough

to induce the transonic stall flutter based on a shock wave motion model. On the other

hand, unsteady shock oscillation rather than blade stall was found to be the driving mech-

anism for flutter instability in a transonic fan [63]. The shock location and movement and

its relation to the inter blade phase angle contributes significantly to the variation in the

aerodynamic damping [64]. The comparison with measured data for the onset of a tran-

sonic fan flutter by Chew et al. [14] shows that the shock movement of the blade passage

appears to be an important parameter causing the fan flutter due to the interaction of the

passage shocks with the suction surface boundary layer. Vahdati et al. [8] shows that the

flow separation behind the shock on the suction surface is the key driver of a wide-chord

transonic fan flutter. Another study shows that shock has both stabilizing and destabilizing

effect with the inter-blade phase angle and location of shock having a significant impact

on stability [11, 65]. All these studies indicate the complexity of the stall flutter that can

be induced by different flow phenomena. Accurate simulation of compressor/fan flutter is

crucial for industrial design and diagnosis.

Turbomachinery flutter is an classical aeromechanical problem and has been stud-

ied for decades. Recently, a new turbomachinery aeromechanical problem, namely non-

synchronous vibration(NSV), whose blade vibration frequency is away from harmonics of

rotor shaft frequency, has attracted a lot of attention [16–20, 22, 66–68]. The high speed



19

axial compressor investigated in this study exhibits such an non-engine order vibration on

the 1st stage rotor blades during the engine acceleration in the rig testing [17, 21, 22], i.e.

non-synchronous vibration (NSV). The NSV frequency collapses between 2600 Hz and

2661 Hz with a large amplitude close to the blade 1T (1st torsional) mode. Im and Zha [69]

simulated the GE 1-1/2 stage compressor with rigid blade and discovered that the tangential

traveling vortex matches the NSV excitation frequency. No rotating stall is observed when

the NSV occurs.

The main flow mechanism leading to NSV is strongly related to the tip clearance flow

instability and leading edge vortex shedding near the tip span. A propagating vortex struc-

ture near the blade tip in a low speed axial compressor is reported in [19] as a rotating

instability (RI) that causes the axial compressor NSV. Their measurements show that the

RI is limited to the blade tip region with the peak amplitude at 92% of the blade height

around 20% to 30% of the chord and it travels in the opposite direction to rotor rotation.

Similarly, the experiment for a 10 stage high pressure axial compressor [16] shows a NSV

of the 1st stage rotor blades due to a RI. The measured frequencies indicate radial depen-

dency of the NSV with high coherence above 74% rotor span, which decays away from the

RI and is eventually no more detectable below 65% blade span.

Thomassin, et al. [20, 66] suggested a theory different from the rotating instability to

explain the NSV based on the resonance of a impinging jet vortex structure and the acoustic

feedback of a vibrating plate. The jet core feedback theory has been proved by an experi-

ment conducted in [20,66]. It shows that when the acoustic reflection wave length equals to

the jet-to-plate distance, the jet vortical structures lock-on to the acoustic wave frequency

and significant amplification of the pressure fluctuation and vibration of the flexible plate
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are observed. They suggest a simple model to predict the critical tip velocity based on their

impinging jet experiment. Vo’s [68] simulation shows a tip clearance flow instability for an

isolated subsonic axial compressor rotor. In the blade tip region the trailing edge back flow

causes flow impingement on the pressure side that leads to the flow unsteadiness associated

with the NSV.

Camp et al. [70] reports that there were step changes in response frequency as the

wheel speed changed in a low speed compressor. A helical acoustic structure was detected

by using casing dynamic pressure transducer, which was taken as acoustic resonance. This

phenomenon may be understood by using a model involved vortex induced vibration (VIV)

[17]. Spiker et al. [71] and Clark et al. [72,73] consider the NSV as a lock-in phenomenon,

which is observed in flow past an oscillating blunt body configuration, such as cylinder

and airfoil, in which the vortex shedding frequency is locked in the natural frequency of

the structure vibration. Once lock-in phenomenon occurs, the vortex shedding frequency

is independent of in coming flow velocity and can be far way from Strouhal frequency

[74]. The vortex shedding model has been introduced to predict the NSV behavior in

turbomachinery by researchers.

Spiker et al. [71] developed a reduced order computation fluid dynamic(CFD) method

to study to lock in effect of 2-D cascade. The results indicate the largest LCO ampli-

tude is away from the natural shedding frequency. Clark et al. [72] use a multidegree-of-

freedom, traditional van der Pol oscillator to model NSV in turbomachinery. The lock-in

phenomenon typical of NSV is captured for various fluid-structure frequency ratios. The

results also show the maximum amplitude of the LCO occurs at an off-resonant condition,

i.e., when the natural shedding frequency of the aerodynamic instability is not coincident
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with the natural modal. Besem et al. [75] study the frequency lock-in effect of a vortex in-

duced vibrating airfoil at high angle of attack by using harmonic balance(HB) CFDmethod.

The predicted vortex shedding frequency and lock-in region have a good agreement with

experiment. Most people used reduced-order model to analogize the non-engine order vi-

bration due to high computational cost in solving viscous, nonlinear, 3D unsteady flow and

structural vibration equations.

Gan et al. [76] simulated the NSV in a high speed multistage axial compressor using

rigid blade and vibrating blade with fluid-structural interaction(FSI). The numerical results

show that the predicted the dominant excited frequencies of both rigid blade and vibrating

blade are close to the first torsional mode and agrees very well with the measured NSV

frequency, which indicates that the NSV is excited by the traveling vortex near the rotor

leading edge. However, the simulation in [76] is only for one operating point, which is

not conclusive whether the blade vibration is induced by the flow instability or it is lock-in

phenomenon.

The compressor may experience rotating stall during the blade flutter. Rotating stall is

one of the rotating instability in turbomachinery, which may augment the blade flutter if

the frequency of stall cells is close to the blade natural frequency. Hence, the prediction

of rotating stall is the first step of stall flutter simulation and a good demonstration of the

capability of the high fidelity methods.

Rotating stall usually starts from blade tip. The roles of tip clearance vortex, passage

shock and their interactions on stall inception are important to study. Tip clearance vortex

breakdown is considered as one of the causes for stall inception of conventional rotors [77].

For the high-speed compressors, the pattern of flow breakdown through stall or surge is not
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well understood due to the effects of compressibility, difficulties in detailed measurement,

shaft speed, and geometry. Hah et al. [78] numerically studied stall inception in a forward-

swept transonic compressor rotor. There is no tip clearance vortex breakdown during the

operation of rotor, even in the stall condition. The passage shock oscillation is considered

as one of the courses that drive the stall inception. Recently, Reuss et al. [79] tested a jet

engine high pressure compressor to investigate the effect of inlet total pressure distortions

on rotating stall. Their experiment shows that the spike type stall cell moves at approxi-

mately 60% of the compressor speed. After two to three more revolutions, rotating stall has

been established. The speed of the cell is reduced to about 45% of the compressor speed

and its length scale is roughly 50% of the annulus.

The stall inception of NASA Stage 35 is investigated by several research groups. Bright

et al. [80] performed rig test to investigate the stall inception of Stage 35 by considering

5 different conditions. Their results show that the stall inception is a modal type at clean-

inlet condition. Mina et al. [81] carried out numerical simulation of rotating stall inception

for NASA Stage 35 using a single blade passage. It is observed that at near stall, the

tip vortex grows larger in size and its trajectory becomes perpendicular to the main axial

flow. A low-momentum area near rotor tip leading edge causes the flow spillage and leads

to stall inception. Davis and Yao [82] also used NASA stage 35 single blade passage to

investigate stall inception. Their finding agrees with Hoying et al. [83] who show that the

circulation of tip clearance vortex plays an important role in stall inception development.

Vo [84] conducted rotating stall simulation for a low speed rotor with relative tip Mach

number of 0.2 and the transonic NASA stage 35 rotor using 6 blade passages. Their results

indicate that leading edge tip clearance flow has spillage below blade tip and back flow
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at the trailing-edge at the onset of spike. Chen et al. [85, 86] conducted a full annulus

simulation of NASA Stage 35 at the full speed using an URANSmodel. In their simulation,

a simplified "roof top" type tip clearance mesh is used to model the tip clearance flow.

Their results show that a disturbance first travels at the rotor speed, and then changes to a

spike disturbance propagating at 84% rotor speed consisting with multiple stall cells. The

disturbance eventually forms a single rotating stall cell of 43% rotor speed [85]. Gan et al.

[87] conducted full annulus simulation of the stall inception of Stage 35 by using URANS

method. A spike type of stall cell which covers about 6 blade passages and propagates with

about 90% of rotor speed was captured.

To achieve high fidelity simulation of nonlinear fluid/structural instabilities during the

fan/compressor flutter, the governing equations of structural and fluid motion should be

simultaneously solved in order to capture the flow and structure responses at the same time

as happening in reality. However, many of fluid-structural interaction (FSI) simulations are

implemented by a loosely coupled procedure, i.e the structural response lags behind the

flow solver by one or several time steps [23]. For example, Gnesin et al. [25] solved the

unsteady Euler equations with the modal approach for the structure analysis in an loosely

coupled manner. Doi et al. [24] loosely coupled an explicit Runge-Kutta multigrid flow

solver with a FEM structure solver to predict the aeroelastic forced responses of NASA

Rotor 67 blade. In the work of Carstens et al. [26] and Sayma et al. [27], the structural part

of the governing equations is time-integrated using Newmark scheme, while the unsteady

air loads are computed at every time step by a Navier-Stokes code in an loosely coupled

manner. Chew et al. [14] used inviscid linearized model, to capture stall flutter (or referred

to as part-speed flutter) of a civil wide chord fan and a low aspect ratio military fan engine.



24

Due to neglecting viscous terms, end wall boundary layers and tip clearance, their compu-

tation fails to show any signs of flutter instability, which was observed in the testing. It is

also shown that the conventional energy method, in which the blade vibration and aerody-

namic forces may be treated independently, could not accurately capture the modern fan

flutter boundary whereas the coupled mode flutter analysis methods do [88].

In the work of Im et al. [65], a fully coupled FSI developed by Chen et al. [28] is ex-

tended for turbomachinery by implementing an advanced blade tip deforming mesh tech-

nique to capture the transonic rotor flutter. In the fully coupled FSI [28], the governing

equations of structural and fluid motion are simultaneously solved by exchanging the un-

steady aerodynamic force and structural displacement within each physical time step via a

successive iteration on the pseudo-time step. The fully coupled FSI methodology adopted

in this study is shown to accurately predict the flutter boundary of a transonic single ro-

tor [65] and AGARD wing with the shock/boundary layer interaction [31, 89].



Chapter 3

Governing Equations

Aeroelasticity involves both aerodynamics and structural dynamics. The governing equa-

tions of aerodynamics is different from those of structural dynamics because of the different

basic principles. They also have different frames of reference. This chapter describes the

governing equations for both aerodynamics and structural dynamics in detail.

3.1 The Flow Governing Equations

The governing equations for flow are time accurate compressible Navier-Stokes equations,

which are a system of unsteady and non-linear partial differential equations for the conser-

vation of mass, momentum, and energy. For turobmachinery flow simulation, the Navier-

Stokes equations are transformed in a relative moving frame of reference in order to take

into account the effects of Coriolis force (2Ω×W) and the centrifugal force(Ω×Ω×r).

To treat complex arbitrary geometries with high accuracy, the Navier-Stokes equations are

transformed from the physical space to the computational space.

25
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3.1.1 Motion in Moving Frame [1]

X

Y

Z

x

y

z

r

Ω
ϕ

R

A

Figure 3.1: Motion of a moving frame of xyz relative to the fixed frame of XYZ

The motion of a particle A in a relative frame xyz to the fixed frame XYZ can be depicted

in Fig. 3.1. The vector r is defined in the XYZ reference as

r=R+ϕ (3.1)

where R is the vector of the reference xyz relative to the fixed coordinates XYZ and ϕ a

position vector in reference xyz.

Applying the material(or Lagrangian) derivative of the vector r with respect to time for
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the XYZ reference, then we have

VXYZ =Wxyz+ Ṙ+Ω×ϕ (3.2)

where Ω is the angular velocity vector with unit normal vector e in a moving frame of xyz.

V is the absolute velocity vector in the XYZ reference andW is the relative velocity vector

in the xyz reference.

Ω = Ωxex+Ωyey+Ωzez (3.3)

The acceleration of a particle A for different references can be obtained [90] by carrying

out the derivative of the velocity vector VXYZ with respect to time for the XYZ reference as

aXYZ = DV
Dt )XYZ = DW

Dt )xyz+Ω×W+ R̈+Ω× Dϕ
Dt )xyz+Ω×Ω×ϕ

+DΩ
Dt )XYZ×ϕ

(3.4)

The superscript˙and¨stand for first and second order derivative with respect to time. Since

the rotating axis of turbomachinery with the constant angular velocity of Ω used in this

study has no translational motion(Ṙ = 0) to the fixed or absolute frame(X ,Y,Z), in above

equation R̈ = 0, DΩ/Dt = 0, ϕ = r and Dϕ/Dtxyz =W. Eq. (3.4) is then rewritten in a

rotating Cartesian coordinate(x,y,z) as presented in Fig. 3.2.

DV
Dt )XYZ = DW

Dt xyz+2Ω×W+Ω×Ω× r (3.5)

The relationship given by Eq. (3.5) can be used to derive both the aerodynamic and
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x

y

z

Ω

Figure 3.2: The rotating frame in Cartesian coordinates for turbomachinery

structure model equations. In the Eq. (3.5), 2Ω×W is called the Coriolis acceleration

vector and Ω×Ω× r is the Centrifugal acceleration vector.

3.1.2 Spatially Filtered NS Equations in Rotating Frame

The Navier-Stokes equations are considered to be able to directly solve engineering turbu-

lent flows. However, such a direct numerical simulation has largely been limited to simple

geometries at low Reynolds number since in general it requires a tremendous mesh and

very small temporal scale, for example grid points � Re9/4 and times steps � Re3/4 to

resolve all scales of turbulence [91].

Since turbulence consists of random fluctuations of the various flow properties, the

statistical approach such as time, spatial or ensemble averaging is usually more meaningful

in engineering practice. The spatial filtering eliminates the small scale high frequency

components of the fluid motion, while keeping the unsteadiness associated with the large

scale turbulent motion [92]. For an arbitrary function u(xi, t), the filtered variable ū(xi, t) is
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defined as:

ū(xi, t) =

∫
D
G(xi−ξi,Δ)u(ξi, t)dξi (3.6)

where G is the filter function and Δ is the filter width and is associated with the mesh

size. Similar to the case of RANS, for compressible flows, it is convenient to introduce the

Favre-filtered variable ũ(xi, t) as:

ũ(xi, t) =
ρu
ρ̄

(3.7)

A variable can be thus decomposed into its Favre-filtered component and fluctuating

component as:

u(xi, t) = ũ(xi, t)+u′′(xi, t) (3.8)

The molecular viscous stress tensor, τ̄ is estimated as:

τ̄i j =
2
3

μ̃
∂ ũk
∂x k

δi j+ μ(
∂ ũi
∂x j

+
∂ ũ j
∂xi

), i, j = 1,2,3 (3.9)

The above equation is in the tensor form, where the subscript 1, 2, 3 represent the

coordinates, x,y,z and the Einstein summation convention is used. The molecular viscosity

μ̃ = μ̃(T̃ ) is determined by Sutherland law.

The σ is the subgrid scale stress tensor due to the filtering process and is expressed as:

σi j = −ρ̄(ũiu j− ũiũ j) (3.10)
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The energy flux Q is expressed as:

Qi = ũ j(τ̄i j+σi j)− q̄i+Φi (3.11)

where Φ is the subscale heat flux:

Φi = −Cpρ̄(ũiT − ũiT̃ ) (3.12)

The q̄i is the molecular heat flux:

q̄i = −Cpμ̃
Pr

∂ T̃
∂xi

(3.13)

ρ̄ ẽ=
p̄

(γ −1) +
1
2

ρ̄(ũ2+ ṽ2+ w̃2−Ω2r2)+ρk (3.14)

where γ is the ratio of specific heats, ρk is the subscale kinetic energy per unit volume.

ρk =
1
2

ρ̄(ũiui− ũiũi) = −1
2

σii (3.15)

In the current simulations, the ρk in Eq.(3.14) is omitted based on the assumption that

the effect is small.

Applying above definitions for the Navier-Stokes equations and using the eddy viscos-

ity concept, then the shear stress τ̄ik and total heat flux q̄k can be expressed in Cartesian

coordinates as follows:

τ̄ik = (μ + μDES)
[(

∂ ũi
∂xk

+
∂ ũk
∂xi

)
− 2
3

δik
∂ ũ j
∂x j

]
(3.16)
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q̄k = −
(

μ
Pr

+
μDES
Prt

)
∂ T̃
∂xk

(3.17)

Note that μDES is obtained by high fidelity delayed detached eddy simulation (DDES) of

turbulence [32,33] in this study. For simplicity, all the bar and tilde in above equations will

be dropped for the rest of the thesis.

3.1.3 Nondimensionalization of the Governing Equations

The flow governing equations are normalized by a characteristic dimension L and freestream

conditions.

t∗ = tV∞
L , x∗ = x

L , y∗ = y
L , z∗ = z

L

μ∗ = μ
μ∞

, u∗ = u
V∞

, v∗ = v
V∞

, w∗ = w
V∞

ρ∗ = ρ
ρ∞

, T ∗ = T
T∞

, p∗ = p
ρ∞V 2∞

, e∗ = e
V 2∞

(3.18)

As the nondimensional numbers introduced in this study, Reynolds number Re, Mach

numberM, and Rossby number Ro are defined as

Re=
ρ∞LV∞

μ∞
(3.19)

M∞ =
V∞√
γRT∞

(3.20)

Ro =
ΩL
V∞

(3.21)

Above normalization results in
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μ∗ =
μ
μ∞

=
μRe

ρ∞LV∞
(3.22)

μ∗ = (T ∗)1.5
T ∗ +110/T∞
T ∗ +1

(3.23)

p∗ =
ρ∗T ∗

γM2∞
(3.24)

ρ∗e∗ =
P∗

γ −1 +
1
2

ρ∗(u∗2+ v∗2+w∗2−Ro2r∗2) (3.25)

For simplicity, the superscript asterisk will be dropped for the rest of the thesis. The

normalized filtered compressible Navier-Stokes(NS) equations in Cartesian coordinates in

a rotating frame can be expressed in a conservative flux vector form as

∂Q
∂ t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂ z

=
1
Re

(
∂Ev
∂x

+
∂Fv
∂y

+
∂Gv
∂ z

)+SR (3.26)

where SR is the source term appeared due to the rotor rotation. The variable vector Q,

inviscid flux vectors E, F, G, and the viscous fluxes Ev, Fv, Gv are given as the following.

Q=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu

ρv

ρw

ρe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.27)
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E=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu

ρu2+ p

ρuv

ρuw

(ρe+ p)u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv

ρvu

ρv2+ p

ρvw

(ρe+ p)v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρw

ρwu

ρwv

ρw2+ p

(ρe+ p)w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.28)

Ev =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

τxx

τxy

τxz

ukτxk−qx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Fv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

τyx

τyy

τyz

ukτyk−qy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Gv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

τzx

τzy

τzz

ukτzk−qz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.29)

SR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

ρR2oy+2ρRow

ρR2oz−2ρRov

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.30)

where

τik = (μ + μDESRe)[
∂ui
∂xk

+
∂uk
∂xi

− 2
3

δik
∂u j
∂x j

] (3.31)

q j = − 1
(γ −1)M2∞

(
μ
Pr

+
μDESRe
Prt

)
∂T
∂x j

(3.32)
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3.1.4 Delayed Detached Eddy Simulation

In 1997 Spalart et al. [32] suggested a hybrid RANS/LES turbulence, the detached eddy

simulation (DES), based on the Spalart-Allmaras (S-A) one equation model [93] which

solves a transport equation for the working variable ν̃ related to the turbulent eddy ν and

LES subgrid-scale (SGS) viscosity. Using the normalization given in Eq. (3.18), the nondi-

mensionalized S-A model including closure coefficients and damping functions is written

in terms of eddy viscosity νt as follows.

Turbulent Eddy Viscosity:

μDES = ρνt = ρν̃ fv1 (3.33)

Eddy Viscosity Equation:

∂ ρ̄ ¯̃ν
∂ t̄ + ∇̄ ·

(
ρ̄ ¯̃ν�̄V

)
= 1
Re∇̄ ·

[
ρ̄
σ (ν̄ + ¯̃ν)∇̄ ¯̃ν

]
+ ρ̄cb1 (1− ft2)

(
S̄+ 1

Re
¯̃ν

κ2d̄2 fv2
)
¯̃ν−

1
Re ρ̄

(
cw1 fw− cb1

κ2 ft2
)(

¯̃ν
d̄

)2
− 1
Re
1
σ
(
ν̄ + ¯̃ν

)
∇̄ ¯̃ν · ∇̄ρ̄+

1
Re

ρ̄
σ cb2

(
∇̄ ¯̃ν

)2
+Reρ̄ ft1 (Δq̄)2

(3.34)

Closure Coefficients:

cb1 = 0.1355,cb2 = 0.622,σ = 2
3 ,cw1 = cb1

k2 + 1+cb2
σ

cw2 = 0.3,cw3 = 2,k = 0.41,cv1 = 7.1,ct1 = 1.0,ct2 = 2.0,ct3 = 1.1,ct4 = 2.0
(3.35)

Auxiliary Relations:

χ =
ν̃
ν

, g= r+ cw2(r6− r), r =
ν̃

ReS̃k2d2
(3.36)
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fv1 =
χ3

χ3+ c3v1
, fv2 = 1− χ

1+ χ fv1
, fw = g(

1+ c6w3
g6+ c6w3

)1/6 (3.37)

S̃= S+
ν̃

Rek2d2
fv2, S=

√
2ωi jωi j, gt =min

(
0.1,

Δq
ωtΔxt

)
(3.38)

ft2 = ct3exp
(−ct4χ2) , ft1 = ct1gtexp

[
−ct2 ω2t

ΔU2
(
d2+g2t d2t

)]
(3.39)

Where ωi j = 1
2

(
∂ui
∂x j −

∂u j
∂xi

)
is the fluid particle angular velocity tensor. ωt is the wall

vorticity at the wall boundary layer trip location, d is the distance to the closest wall, dt

is the distance of the field point to the trip location, Δq is the difference of the velocities

between the field point and the trip location, Δxt is the grid spacing along the wall at the

trip location.

In DES, the coefficients ct1 and ct3 in the S-A model are set to zero and the distance to

the nearest wall, d, is replaced by d̃ as

d̃ = min(d,CDESΔ) (3.40)

where Δ is the largest spacing of the grid cell in all the directions. Within the boundary

layer close to the wall, d̃ = d, hence the turbulence is simulated by RANS mode of Spalart-

Allmaras [93]. Outside of a wall the boundary layer, d̃ =CDESΔ is most of the cases. When

the production and destruction terms of the model are balanced, the length scale d̃ will yield

a Smagorinsky-like eddy viscosity and the turbulence is simulated by the LES model. The

coefficient CDES = 0.65 is used as set in the homogeneous turbulence [94]. The Prt may
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take the value of 0.9 within the boundary layer for RANS mode and 0.5 for LES mode

away from the wall surface.

To overcome the modeled stress depletion problem and make the DES limiter indepen-

dent of grid spacing, the DDES model suggested by Spalart et al. [33] switches the subgrid

scale formulation in the S-A model by redefining the distance to the nearest wall d̃ as

d̃ = d− fdmax(0,d−CDESΔ) (3.41)

where

fd = 1− tanh([8rd]3) (3.42)

rd =
νt +ν

(Ui, jUi, j)0.5k2d2Re
(3.43)

Ui, j =
∂ui
∂x j

(3.44)

where Δ is the largest spacing of the grid cell in all the directions,Ui, j represents the velocity

gradient, and k denotes the Karmann constant. Within the boundary layer close to walls,

d̃ = d, and away from the boundary layer, d̃ = d− fd(d−CDESΔ) is most of the case. This

mechanism enables DDES to behave as a RANS model in the near-wall region, and LES

away from walls. This modification in d̃ reduces the grey transition area between RANS

and LES.

To couple the SA based DES/DDES with Navier-Stokes equations, the eddy viscosity
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equation (3.34) is also transformed to the computational space and can be expressed in the

generalized coordinate system as

∂ 1Jρν̃
∂ t

+
∂ρν̃U

∂ξ
+

∂ρν̃V
∂η

+
∂ρν̃W

∂ζ
=
1
Re

(
∂ ρ

σ (ν + ν̃)(l•∇ν̃)

∂ξ

+
∂ ρ

σ (ν + ν̃)(m•∇ν̃)

∂η
+

∂ ρ
σ (ν + ν̃)(n•∇ν̃)

∂ζ
+
1
J
Sν

)
(3.45)

where

Sν = ρcb1 (1− ft2) S̃ν̃ + 1
Re

[
−ρ

(
cw1 fw− cb1

κ2 ft2
)( ν̃

d
)2

+ ρ
σ cb2 (∇ν̃)2− 1

σ (ν + ν̃)∇ν̃ •∇ρ
]
+Re

[
ρ ft1 (Δq)2

] (3.46)

In summary, the spatially filtered Navier-Stokes equations with the improved DES tur-

bulence closure in a rotating frame of reference in the generalized coordinates(ξ ,η,ζ ) can

be written in a conservative form as the following:

∂Q
∂ t

+
∂E
∂ξ

+
∂F
∂η

+
∂G
∂ζ

=
1
Re

(
∂R
∂ξ

+
∂S
∂η

+
∂T
∂ζ

)
+D (3.47)

where

Q=
1
J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu

ρv

ρw

ρe

ρν̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.48)
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E=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρU

ρuU+ lxp

ρvU+ lyp

ρwU+ lzp

(ρe+ p)U− lt p

ρν̃U

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,F=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρV

ρuV +mxp

ρvV +myp

ρwV +mzp

(ρe+ p)V −mt p

ρν̃V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,G=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρW

ρuW +nxp

ρvW +nyp

ρwW +nzp

(ρe+ p)W −nt p

ρν̃W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.49)

R=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

lkτxk

lkτyk

lkτzk

lk(uiτik−qk)
ρ
σ (ν + ν̃)(l•∇ν̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,S=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

mkτxk

mkτyk

mkτzk

mk(uiτik−qk)
ρ
σ (ν + ν̃)(m•∇ν̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,T=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

nkτxk

nkτyk

nkτzk

nk(uiτik−qk)
ρ
σ (ν + ν̃)(n•∇ν̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.50)

D=
1
J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ρR2oy+2ρRow

ρR2oz−2ρRov

0

Sν
Re

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.51)
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where

τik = (μ + μDESRe)[
∂ui
∂xk

+
∂uk
∂xi

− 2
3

δik
∂u j
∂x j

] (3.52)

qk = − 1
(γ −1)M2∞

(
μ
Pr

+
μDESRe
Prt

)
∂T
∂xk

(3.53)

3.2 The Structure Governing Equations

The structural equation of motion of an N-DOF (degree of freedom) system with the me-

chanical damping and the aerodynamic loading as the excitation force, and which can be

expressed as the following:

[M]{Ẍ}+[C]{Ẋ}+[K]{X} = {F} (3.54)

where, M, C, K are the global mass, structural damping and stiffness matrices. F is total

aerodynamic force acting on the blade surface.

Total aerodynamic force can be defined as follows:

F= −
∮
P · n̂dA+

∮
τw · t̂dA (3.55)

where, n̂ is the unit normal vector to the blade surface and t̂ is the unit tangent vector to the

blade surface. P is the fluid static pressure and τw is the fluid wall shear stress acting on the

blade surface. The effects of viscosity can not be neglected for the highly loaded transonic

rotor because rotating stall with large structure of flow separation may occur in/near stall

conditions.
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To obtain the solution of forced vibration in terms of the normal coordinates of the

system, first a finite number of mode shapes(φ j) are obtained by solving the characteristic

equation of motion.

Kφ j = λ jMφ j (3.56)

where λ j(= ω2j ) is the eigenvalue of the j-th mode and ω j is the corresponding natural

frequency. Note that K is the global stiffness matrix of Eq. (3.54), in which the centrifugal

force term is added in the perpendicular directions of rotating axis. It is desirable to use the

mass normalized mode shape(φ̃ ) defined as the normal modes divided by square root of the

the generalized mass(
√

φTmφ ) since the orthogonality in terms of the orthogonal modes

becomes

φ̃Tj Mφ̃ j = 1 (3.57)

To decouple Eq. (3.54), let the displacement vector as

{X} = [Φ̃]{q} (3.58)

and premultiply Eq. (3.54) by the transpose [Φ̃]T

[Φ̃]T [M][Φ̃]{q̈}+[Φ̃]T [C][Φ̃]{q̇}+[Φ̃]T [K][Φ̃]{q}

= [Φ̃]T{F}
(3.59)

where q is the vector of the principal coordinates. Apply the orthogonality of eigenvectors

of the system defined as

φTj Mφi = 0; i �= j (3.60)
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φTj Kφi = 0; i �= j (3.61)

φTi Mφi =Mii (3.62)

φTi Kφi = Kii (3.63)

where Mii and Kii are called the generalized mass and the generalized stiffness. Assume

damping matrix to be a linear combination of the mass and stiffness matrices as

C= αM+βK (3.64)

and define the modal damping ratio by

2ς jω j = α +βω2j (3.65)

Eq. (3.59) is then completely decoupled and the jth equation will have the form as

q̈ j+2ζ jω jq̇ j+ω2j q j =
φ̃Tj
m j F

(3.66)

where [Φ̃]T = [φ̃1, · · ·, φ̃ , · · ·, φ̃N]T . N is the number of modal coordinates. ω j and ζ j are

natural frequency and modal damping ratio for mode j. mj denotes the jth diagonal element

of the generalized mass matrix and is unity, resulting in

q̈ j+2ζ jω jq̇ j+ω2j q j = φ̃Tj F (3.67)

In the current study, the structural system may be reduced to only five mode shapes,
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since a few bending and torsional frequencies are usually sufficient to determine aerome-

chanical phenomena of turbomachinery such as flutter and non-synchronous vibration.

3.2.1 Normalization of Modal Equation

The modal equation (3.67) is further normalized to be consistent with the aerodynamic

model for the fully coupled fluid/structure interaction procedure. The following dimen-

sionless parameters are introduced.

x∗ =
x
L

(3.68)

q∗ =
q
L

(3.69)

t∗ = tωα (3.70)

F∗ =
F

ρ∞U2∞L2
(3.71)

where t is structural time, ωα is the characteristic frequency of the system (or in general

the first torsional mode natural frequency), and L is the characteristic length used in the

normalization of the aerodynamic model. ρ∞ andU∞ are the fluid density and velocity at a

point of reference. Apply above normalization to Eq. (3.67), then we have

d2q∗j
dt∗2 +2ς j

(
ω j
ωα

) dq∗j
dt∗ +

(
ω j
ωα

)2
q∗j = φ̃Tj ·F∗ · ρ∞U2∞L

ωα 2
(3.72)
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To reflect the effects of three wing flutter control parameters: mass ratio μ̄ = m̄
V̄ρ∞
,

reduced velocity V ∗ = U∞
bsωα

and flutter speed index Vf = V ∗
μ̄ , the modal force term on the

right hand side of the normalized modal equation (3.72) can be expressed as [28].

q̈ j+2ζ j(
ω j
ωα

)q̇ j+(
ω j
ωα

)2q j =
φ̃Tj
m∗
j
·F∗ ·Vf 2 · b

2
s L
V̄ · m̄ (3.73)

where the dimensionless quantities are denoted by an asterisk. m̄ is the measured blade

mass (or wing panel mass), V̄ represents the conical frustum volume as illustrated in Fig.

3.3.

V̄ =
πH
3

(b2s +bsbt +b2t ) (3.74)

H

b

bt

s

Figure 3.3: Frustrum volume

where bs is the streamwise root semi chord ( or blade semi root chord), bt is the streamwise

tip semi chord( or blade semi tip chord), and H is the blade active length or the wing span.

L is the reference length and ωα is the angular frequency of the first torsional mode in units

radians/sec. μ̄ stands for the mass ratio, i.e. the ratio between the structural mass and the

mass of the equivalent volume of fluid at reference density. It is noticed that m∗
j should

be equal to one when the mass normalized mode shapes are used. Note that the structural
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dimensionless time t∗ may be calculated based on the dimensionless time(t∗f luid) used in the

normalized flow governing equation Eq. (3.47) as follows.

t∗ = t∗f luid ·
L
V ∗bs

(3.75)

In order to use the time accurate FSI solver developed for the fluid flow [95], the equa-

tions are then transformed to a state form as follows:

[M]
∂S
∂ t

+[K]{S} = q (3.76)

where

S=

⎛⎜⎜⎝ q j

q̇ j

⎞⎟⎟⎠ ,M= [I],K=

⎛⎜⎜⎝ 0 −1

(
ω j
ωα

)2 2ζ j(
ω j
ωα

)

⎞⎟⎟⎠

q=

⎛⎜⎜⎝ 0

φTj ·F∗ ·Vf · b
2
s L
V̄ · m̄

⎞⎟⎟⎠
3.2.2 Parameters for Flutter Control

There are in general three wing flutter control( or input) parameters: mass ratio μ̄ = m̄
V̄ρ∞
,

reduced velocity V ∗ = U∞
bsωα

, and flutter speed index Vf = V ∗
μ̄ . The mass ratio μ̄ takes into

account the effect of stiffness in flutter. It represents the ratio between the structural mass

and the mass of the equivalent volume of fluid at reference density. Typically flutter speed

indexVf is selected as the main parameter in flutter boundary prediction becauseVf reflects

the effects of both dynamic pressure of the surrounding flow and stiffness of the structure.
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The effect of aircraft altitude in wind tunnel tests [2, 96] is obtained based on variation of

dynamic pressure(varying the density) at constant Mach number. Liu [97] and Chen [28]

used Vf , whereas Bakhle [98] used V ∗ to find the flutter boundary at a given Mach number.

In this study, either Vf or V ∗ can be used explicitly as shown in Eq. (3.73). The Vf is

selected for the wing flutter simulation.

Several iterations are usually needed for a given freestream Mach number to search the

neutrally stable point, which is treated as the flutter boundary. Most of the computations

only need to calculate a few periods to see whether the responses are divergent or damped

with time. The flutter velocity index Vf is iterated to find the flutter boundary, all other

variables such as inlet total pressure, inlet total temperature, and the static pressure at outlet

are not varied. The Reynolds number, Re = ρ∞V∞L
μ∞

varies with the freestream velocity. In

the wing flutter experiment [96], dynamic pressure q= 1
2ρ∞V 2∞ is the main fluid quantity to

adjust flutter level. The way to control the dynamic pressure is either by varying the free

stream density using the real gas such as freon-12 or by changing the velocity instead of

density. In this paper, we vary the freestream velocity, V∞, which has direct relation with

the reduced velocity V ∗, and hence the flutter velocity index Vf .

For turbomachinery, the flutter boundary is typically determined along the speedline at

a given rotor speed instead of varying the freestream Mach number unlike wing flutter be-

cause the change in the back pressure of fan/compressor controls the flow at inlet, resulting

in the change in the mass flow and total pressure ratio.



Chapter 4

Numerical Methodology

In this chapter, an implicit finite difference discretization for the flow governing equations

is described. The inviscid fluxes are discretized using a low diffusion E-CUSP scheme [99].

The fifth-order WENO scheme [100, 101] is used to reconstruct the conservative variables

at volume interfaces. A set of fully conservative fourth-order accurate finite central differ-

encing schemes for the viscous terms is employed in this research [46, 102]. The structure

governing equations are discretized and solved implicitly in the same manner to be consis-

tent with the flow governing equations.

4.1 Implicit Discretization

Let J = 1
ΔV , then 3D Navier-Stokes equations (3.47) is rewritten in a conservative flux

vector form as

∂ΔVQ
∂ t

+
∂ (E−R′)

∂ξ
+

∂ (F−S′)
∂η

+
∂ (G−T′)

∂ζ
= ΔVD (4.1)

46
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i,j i+1,ji-1,j

i,j+1

i,j-1

i,j-1/2

i+1/2,ji-1/2,j

i,j+1/2

Δη=1

Δξ=1

η

ξ

Figure 4.1: Discretization domain indicating the cell center(i,j)

where ΔV denotes the volume of the cell andR′ =R/Re, S′ = S/Re, T′ =T/Re. For steady

state solutions, the governing equation will be elliptic type at subsonic and hyperbolic at

supersonic. This will make it difficult to discretize the Navier-Stokes equations using a

consistent scheme. The temporal term is thus included for steady state solutions to keep

the governing equations to have the same hyperbolic type across Mach number 1. For

steady state solution, the accuracy of the temporal term is irrelevant since it must be zero

when it is converged. Hence, the temporal term is discretized using first order Euler method

for its simplicity. The discretized temporal term becomes

ΔV (Qn+1−Qn)
Δt

+[
∂ (E−R′)

∂ξ
]n+1+[

∂ (F−S′)
∂η

]n+1+[
∂ (G−T′)

∂ζ
]n+1 = ΔVDn+1 (4.2)
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where n and n+ 1 are two sequential time levels, which have a time interval of Δt. Eq.

(4.2) can be further discretized in space using a conservative differencing as the following:

ΔVi jk(Qn+1i jk −Qni jk)
Δt

+(Ei+ 1
2
−Ei− 1

2
)n+1− (R′

i+ 1
2
−R′

i− 1
2
)n+1

+(F j+ 1
2
−F j− 1

2
)n+1− (S′j+ 1

2
−S′j− 1

2
)n+1

+(Gk+ 1
2
−Gk− 1

2
)n+1− (T′k+ 1

2
−T′k− 1

2
)n+1

= ΔVi jkDn+1i jk

(4.3)

To evaluate the inviscid fluxes at the cell interface E,F,G, the characteristic based

upwind schemes are usually employed due to importance of capturing strong shocks and

careful treatment of discontinuity, while the central differencing is used for the viscous

fluxes R,S,T. For implicit methods, a Jacobian must be introduced at time level n+1 for

linearization. This Jacobian is formed by the derivatives of the flux values with respect to

each conservative variables at a cell center point.

The implicit matrices will result in 9 elements around the diagonal element for 3D with

first order upwind for inviscid fluxes and second order central differencing scheme. The

first order upwind scheme for the implicit matrix will have the diagonal dominance required

by Gauss-Seidel iteration [103]. Using Gauss-Seidel line relaxation, a block tri-diagonal

matrix is inversed along each mesh line.

With an upwind scheme, the numerical flux is split into its left(L) and right(R) side

fluxes. For example, the inviscid flux E at i+ 1
2 can be expressed as

Ei+ 1
2
= EL+ER = E+

i+ 1
2
+E−i+ 1

2
(4.4)
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Since Eq. (4.1) is nonlinear, a linearization procedure is necessary. Let us apply a

Taylor series expansion to the flux vectors at time level n+1 as

En+1 ∼= En+ ∂E
∂ t

Δt+O[(Δt)2] (4.5)

∂E
∂ t

=
∂E
∂Q

∂Q
∂ t

∼= ∂E
∂Q

ΔQ
Δt

(4.6)

En+1 ∼= En+A•ΔQ (4.7)

where A(= ∂E
∂Q) is the inviscid flux Jacobian matrix and the change in the conservative

variable vector, ΔQ, is defined by

ΔQ=Qn+1−Qn (4.8)

The inviscid flux E at the cell interface i+ 1
2 can be given as

En+1
i+ 1
2

= Eni+ 1
2
+(∂E+

∂Q )L •ΔQL+(∂E−
∂Q )R •ΔQR (4.9)

where ΔQ approaches zero when it is converged. Hence the accuracy order for ΔQ is not

important. The first order accuracy is used to evaluate ΔQ.

ΔQL = ΔQi, ΔQR = ΔQi+1 (4.10)

Let

ALi+ 1
2
= (

∂E+

∂Q
)L, ARi+ 1

2
= (

∂E−

∂Q
)R (4.11)
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Then,

En+1i+ 1
2

= Eni+ 1
2
+ALi+ 1

2
ΔQi+ARi+ 1

2
ΔQi+1 (4.12)

Thus,

En+1
i+ 1
2
−En+1

i− 1
2

=

(Eni+ 1
2
−Eni− 1

2
)+ARi+ 1

2
ΔQi+1+(ALi+ 1

2
−ARi− 1

2
)ΔQi−ALi− 1

2
ΔQi−1

(4.13)

The viscous fluxes are linearized using central differencing.

(R′
i+ 1
2
)n+1 = (R′

i+ 1
2
)n+

∂R′
i+ 12

∂Qi+1 ΔQi+1+
∂R′

i+ 12
∂Qi ΔQi

= (R′
i+ 1
2
)n+LRi+ 1

2
ΔQi+1+LLi+ 1

2
ΔQi

(4.14)

Thus,

(R′
i+ 1
2
)n+1− (R′

i− 1
2
)n+1 =

(R′
i+ 1
2
)n− (R′

i− 1
2
)n+LRi+ 1

2
ΔQi+1+(LLi+ 1

2
−LRi− 1

2
)ΔQi−LLi− 1

2
ΔQi−1

(4.15)

The source term can be linearized by

Dn+1i, j,k
∼= Dni, j,k+(

∂D
∂Q

)i, j,k •ΔQi, j,k (4.16)

To apply above linearization to the fluxes in η and ζ direction, then the integrated

governing equations are written as
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(I−Θ)ΔQi, j,k+ Â+ΔQi+1, j,k+ ÂΔQi, j,k+ Â−ΔQi−1, j,k

+B̂+ΔQi, j+1,k+ B̂ΔQi, j,k+ B̂−ΔQi, j−1,k

+Ĉ+ΔQi, j,k+1+ĈΔQi, j,k+Ĉ−ΔQi, j,k−1 =RHSn

(4.17)

where Θ = Δt • ( ∂D
∂Q)ni, j,k. The coefficients A,A+,A−, B,B+,B−, and C,C+,C− are called

the left hand side (LHS) coefficient matrices and given as

Â+ = Δt
ΔV (ARi+ 1

2
−LRi+ 1

2
)

Â = Δt
ΔV (ALi+ 1

2
−LLi+ 1

2
−ARi− 1

2
+LRi− 1

2
)

Â− = − Δt
ΔV (ALi− 1

2
−LLi− 1

2
)

B̂+ = Δt
ΔV (BRj+ 1

2
−MRj+ 1

2
)

B̂ = Δt
ΔV (BLj+ 1

2
−MLj+ 1

2
−BRj− 1

2
+MRj− 1

2
)

B̂− = − Δt
ΔV (BLj− 1

2
−MLj− 1

2
)

Ĉ+ = Δt
ΔV (CRk+ 1

2
−NRk+ 1

2
)

Ĉ = Δt
ΔV (CLk+ 1

2
−NLk+ 1

2
−CRk− 1

2
+NRk− 1

2
)

Ĉ− = − Δt
ΔV (CLk− 1

2
−NLk− 1

2
)

(4.18)

In Eq. (4.17), RHSn is the summation of all terms on the right hand side (RHS) of the

discretized equation and written as

RHSn = − Δt
ΔV [(Ei+ 1

2
−Ei− 1

2
)n+(Fi+ 1

2
−Fi− 1

2
)n+(Gi+ 1

2
−Gi− 1

2
)n

−(R′
i+ 1
2
−R′

i− 1
2
)n− (S′i+ 1

2
−S′i− 1

2
)n− (T′i+ 1

2
−T′i− 1

2
)n]+Δt •Dn

(4.19)
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Since the delta formulation(ΔQ), the left hand side (LHS) in Eq. (4.17) constructed

by employing 1st order scheme, does not affect the final solution, the accuracy of the con-

verged solution relies on the accuracy of RHSn. The 5th order WENO scheme with an

efficient upwind Riemann solver, so called the low diffusion E-CUSP (LDE) scheme [99],

is used to evaluate the interface inviscid fluxes in RHSn. A fully conservative 4th order

central differencing scheme [46] is used to evaluate the viscous fluxes. The unfactored

Gauss-Seidel line iteration method is adopted to solve the Eq. (4.17) because the diagonal

dominance is achieved through the 1st order implicit discretization and it is shown to be

the most efficient relaxation method for transonic flow simulation [104].

4.2 Upwind Characteristics

Upwind schemes are designed to resolve the flow physics reasonably by accounting for the

wave propagation, in which the flux vector is decomposed into a negative and a positive

contributions according to the signs of the eigenvalues of the Jacobian matrices. Forward

difference is then applied for the negative flux and backward difference for the positive

flux. In the present study the Van Leer scheme [105] as a family of CUSP scheme is used

for the LHS side in Eq. (4.17) and the LDE scheme [99] is applied for the RHS side in Eq.

(4.17), which is described in detail in the following sections.

Before the upwind schemes are proposed to solve the LHS coefficients and RHS fluxes

shown in Eq. (4.17), the characteristics of hyperbolic system as basis of the upwind

schemes are explored. For example, the inviscid Jacobian matrix in ξ -direction can be

computed as
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∂E
∂Q =

∂ (E1,E2,E3,E4,E5)
∂ (Q1,Q2,Q3,Q4,Q5)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂E1
∂Q1

∂E1
∂Q2

∂E1
∂Q3

∂E1
∂Q4

∂E1
∂Q5

∂E2
∂Q1

∂E2
∂Q2

∂E2
∂Q3

∂E2
∂Q4

∂E2
∂Q5

∂E3
∂Q1

∂E3
∂Q2

∂E3
∂Q3

∂E3
∂Q4

∂E3
∂Q5

∂E4
∂Q1

∂E4
∂Q2

∂E4
∂Q3

∂E4
∂Q4

∂E4
∂Q5

∂E5
∂Q1

∂E5
∂Q2

∂E5
∂Q3

∂E5
∂Q4

∂E5
∂Q5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)

Q=
1
J

[
ρ ρu ρv ρw ρe

]
=

[
Q1 Q2 Q3 Q4 Q5

]
(4.21)

E=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρŪ

ρuŪ+ lxP

ρvŪ+ lyP

ρwŪ+ lzP

(ρe+P)Ū

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ(lxu+ lyv+ lzw)

ρu(lxu+ lyv+ lzw)+ lxP

ρv(lxu+ lyv+ lzw)+ lyP

ρw(lxu+ lyv+ lzw)+ lzP

(ρe+P)(lxu+ lyv+ lzw)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

E2

E3

E4

E5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.22)

where Ū =U− lt and the static pressure for a perfect gas can be stated as

P= (γ −1)[ρe−ρ
1
2
(u2+ v2+w2−Ω2r2)] (4.23)

then, Eq. (4.22) and Eq. (4.23) can be reconstructed using the conservative variable vector

Q as

E1 = lxQ2+ lyQ3+ lzQ4 (4.24)
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E2 = Q2
Q1 (lxQ2+ lyQ3+ lzQ4)+ lx(γ −1)(Q5−q) (4.25)

E3 = Q3
Q1 (lxQ2+ lyQ3+ lzQ4)+ ly(γ −1)(Q5−q) (4.26)

E4 = Q4
Q1 (lxQ2+ lyQ3+ lzQ4)+ lz(γ −1)(Q5−q) (4.27)

E5 = [γQ5− (γ −1)q](lx Q2Q1 + ly Q3Q1 + lz Q4Q1 )
(4.28)

where

q=
1
2
(
Q22
Q1

+
Q23
Q1

+
Q24
Q1

−Q1Ω2r2) (4.29)

The resulting Jacobian matrix A is

A= ∂E
∂Q =

J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 lx ly lz 0

−uŪ+(γ −1)lxek Ū+(2− γ)lxu lyu+(1− γ)lxv lzu+(1− γ)lxw (γ −1)lx

−vŪ +(γ −1)lyek lxv+(1− γ)lyu Ū+(2− γ)lyv lzv+(1− γ)lyw (γ −1)ly

−wŪ +(γ −1)lzek lxw+(1− γ)lzu lyw+(1− γ)lzv Ū+(2− γ)lzw (γ −1)lz

a51 (1− γ)Ūu+ Iolx (1− γ)Ūv+ Ioly (1− γ)Ūw+ Iolz γŪ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.30)

a51 = Ū [(γ −1)∗ (ek+Ω2r2)− Io] (4.31)
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where rothalpy Io is defined as

Io =
γ

γ −1
P
ρ

+ ek =
a2

γ −1 + ek (4.32)

ek =
1
2
(u2+ v2+w2−Ω2r2) (4.33)

The eigenvalues(λ1,2,3,4,5) of the Jacobian matrix A that represent the characteristic

direction of propagation are determined by

A= XAΛAX−1
A (4.34)

ΛA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

0 0 0 λ4 0

0 0 0 0 λ5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ū 0 0 0 0

0 Ū 0 0 0

0 0 Ū 0 0

0 0 0 Ū+C 0

0 0 0 0 Ū−C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.35)

where ΛA is a diagonal matrix with its element being the eigenvalues of A, XA is the eigen-

vector matrix. C is the contravariant speed of sound given as

C = c
√
l2x + l2y + l2z (4.36)
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The eigenvector XA is

XA = [�X1 �X2 �X3 �X4 �X5]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1

− ly
lx

Ū
lx − lz

lx u+ cl̂x u− cl̂x

1 0 0 v+ cl̂y v− cl̂y

0 0 1 w+ cl̂z w− cl̂z
lyu−lxv
lx

2u(lyv+lzw)−(v2+w2−u2)lx
2lx

lxw−lzu
lx Io+ cŪ√

l2x+l2y+l2z
Io− cŪ√

l2x+l2y+l2z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.37)

where

l̂x = lx√
l2x+l2y+l2z

l̂y =
ly√

l2x+l2y+l2z

l̂z = lz√
l2x+l2y+l2z

(4.38)

X−1
A is the inverse eigenvector matrix of XA such that

X−1
A XA = I (4.39)

Note that the flux vector E equals AQ and is homogeneous function of degree one.

The eigenvalues are real and consist of positive and negative eigenvalues. The signs of the

eigenvalues indicate the direction of wave propagation, hence the flux vector can be split

into positive or negative characteristics.

For example, for the subsonic flow where Mξ (= U
C ) < 1, the eigenvaluesU , U , U and
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U+C are positive, andU−C is negative. If the Steger-Warming flux vector splitting (FVS)

scheme [106] is taken into account, then the Jacobian matrix A can be split as the following.

A= A+ +A− (4.40)

where

A+ = XAΛ+
A X

−1
A (4.41)

A− = XAΛ−
A X

−1
A (4.42)

Λ+
A is a diagonal matrix whose elements are the positive eigenvalues of A and Λ−

A is a

diagonal matrix whose elements are the negative eigenvalues of A. For example, if λ1(=U)

is positive, then

Λ+
A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ū 0 0 0 0

0 Ū 0 0 0

0 0 Ū 0 0

0 0 0 Ū+C 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.43)

where Λ−
A = ΛA−Λ+

A . Then, the flux vector E can be split as

E+ = A+Q (4.44)

E− = A−Q (4.45)
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The other inviscid coefficients matrices, B andC are determined in the same manner as

the matrix A. For the supersonic flow (Mξ > 1), all five eigenvalues are positive and which

results in

A+ = A (4.46)

A− = 0 (4.47)

4.3 The Low Diffusion E-CUSP (LDE) Scheme

The Low Diffusion E-CUSP (LDE) Scheme [99] is used to evaluate the inviscid fluxes.

The basic idea of the LDE scheme is to split the inviscid flux into the convective flux Ec

and the pressure flux Ep based on the upwind characteristics. In generalized coordinate

system, the flux E can be split as the following:

E′ = Ec+Ep =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρU

ρuU

ρvU

ρwU

ρeU

ρν̃U

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

lxp

lyp

lzp

pU

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.48)

where,U is the contravariant velocity in ξ direction and is defined as the following:
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U = lt+ lxu+ lyv+ lzw (4.49)

U is defined as:

U = lxu+ lyv+ lzw (4.50)

The convective term, Ec is evaluated by

Ec = ρU

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

u

v

w

e

ν̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ρU f c, f c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

u

v

w

e

ν̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.51)

let

C = c
(
l2x + l2y + l2z

) 1
2 (4.52)

where c=
√

γRT is the speed of sound.

Then the convective flux at interface i+ 1
2 is evaluated as:

Eci+ 1
2
=C1

2

[
ρLC+ f cL+ρRC− f cR

]
(4.53)

where, the subscripts L and R represent the left and right hand sides of the interface. The

Mach number splitting of Edwards [107] is borrowed to determine C+ and C− as the fol-
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lowing:

C1
2
= 1
2 (CL+CR) (4.54)

C+ = α+
L (1+βL)ML−βLM+

L −M+
1
2

(4.55)

C− = α−
R (1+βR)MR−βRM−

R +M−
1
2

(4.56)

ML = UL
C1
2

, MR = UR
C1
2

(4.57)

αL,R = 1
2 [1± sign(ML,R)] (4.58)

βL,R = −max [0,1− int (|ML,R|)] (4.59)

M+
1
2

=M1
2

CR+CLΦ
CR+CL , M−

1
2

=M1
2

CL+CRΦ−1
CR+CL

(4.60)

Φ =
(ρC2)R
(ρC2)L

(4.61)

M1
2
= βLδ+M−

L −βRδ−M+
R

(4.62)
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M±
L,R = ±1

4 (ML,R±1)2 (4.63)

δ± = 1
2
{
1± sign[12 (ML+MR)

]} (4.64)

The pressure flux, Ep is evaluated as the following

Ep
i+ 1
2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

P+plx

P+ply

P+plz

1
2 p

[
U+C 1

2

]
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
L

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

P−plx

P−ply

P−plz

1
2 p

[
U−C 1

2

]
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R

(4.65)

The contravariant speed of sound C in the pressure vector is consistent with U . It is

computed based onC as the following,

C =C− lt (4.66)

The use ofU and C instead ofU and C in the pressure vector is to take into account of

the grid speed so that the flux will transit from subsonic to supersonic smoothly. When the

grid is stationary, lt = 0,C =C,U =U .

The pressure splitting coefficient is:

P
±
L,R =

1
4

(ML,R±1)2 (2∓ML) (4.67)
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The LDE scheme can capture crisp shock profile and exact contact surface discontinuities

as accurately as the Roe scheme [108]. With an extra equation from the DES, the splitting

is basically the same as the original scheme for the Euler equation. This is an advantage

over the Roe scheme [109], for which the eigenvectors need to be derived when any extra

equation is added to the governing equations. In addition, it is simpler and more CPU

efficient than the Roe scheme due to no matrix operation.

4.4 The 5th Order WENO Scheme

The interface flux, Ei+ 1
2

= E(QL,QR), is evaluated by determining the conservative vari-

ables QL and QR using fifth-order WENO scheme [100, 101]. For example,

(QL)i+ 1
2
= ω0q0+ω1q1+ω2q2 (4.68)

where

q0 = 1
3Qi−2− 7

6Qi−1+
11
6 Qi

q1 = −1
6Qi−1+

5
6Qi+

1
3Qi+1

q2 = 1
3Qi+

5
6Qi+1− 1

6Qi+2

(4.69)

ωk =
αk

α0+ . . .+αr−1
(4.70)
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αk = Ck
ε+ISk , k = 0, . . . ,r−1

C0 = 0.1, C1 = 0.6, C2 = 0.3

IS0 = 13
12 (Qi−2−2Qi−1+Qi)2+ 1

4 (Qi−2−4Qi−1+3Qi)2

IS1 = 13
12 (Qi−1−2Qi+Qi+1)2+ 1

4 (Qi−1−Qi+1)2

IS2 = 13
12 (Qi−2Qi+1+Qi+2)2+ 1

4 (3Qi−4Qi+1+Qi+2)2

(4.71)

where, ε is originally introduced to avoid the denominator becoming zero and is supposed

to be a very small number. In [101], it is observed that ISk will oscillate if ε is small and

also shift the weights away from the optimum values in the smooth region. The higher

the ε values, the closer the weights approach the optimum weights, Ck, which will give

the symmetric evaluation of the interface flux with minimum numerical dissipation. When

there are shocks in the flow field, ε can not be too large to maintain the sensitivity to shocks.

In [101], the optimized value of ε = 10−2 is recommended for the transonic flow with shock

waves.

4.5 The 4th Order Central Differencing for Viscous Terms

A set of conservative fourth-order accurate finite central differencing schemes for the vis-

cous terms is suggested [46]. These central differencing schemes are constructed so that

the stencil widths are within the WENO scheme stencil. This requires that the central

differencing achieves their maximum order accuracy in the WENO stencil.

We take the viscous flux derivative in ξ -direction as the example to explain how the

schemes are constructed. To conservatively discretize the viscous derivative term in Navier-

Stokes equations Eq. (3.47), we have
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∂R
∂ξ

|i =
R̃i+1/2− R̃i−1/2

Δξ
(4.72)

To obtain 4th order accuracy, R̃ needs to be reconstructed as

R̃i−1/2 =
i+1/2

∑
I=i−3/2

αIRI (4.73)

where

αi−3/2 = − 1
24

, αi−1/2 =
26
24

, αi+1/2 = − 1
24

Ri−1/2 = [(ξxτxx)+(ηyτxy)+(ζzτxz)]i−1/2

(τxx) = μ{43
[
(ξx ∂u

∂ξ )+(ηx ∂u
∂η )+(ζx ∂u

∂ζ )
]

−2
3 [(ξy

∂v
∂ξ )+(ηy ∂v

∂η )+(ζy ∂v
∂ζ )

(ξz ∂w
∂ξ )+(ηz ∂w

∂η )+(ζz ∂w
∂ζ )]}

(4.74)

If R in Eq. (4.73) can be approximated with the accuracy order not lower than 4th order,

the Taylor series expansion analysis of (4.72) and (4.73) will give

1
Δξ

(R̃i+1/2− R̃i−1/2) = R
′
(ξi)+O(Δξ 4) (4.75)

and the 4th order accuracy is achieved (to be proved later). It needs to point out that in

Eq. (4.72), R̃i−1/2 can not be replaced by Ri−1/2. Otherwise, the 4th order accuracy can

not be achieved even though the high order approximation of Ri−1/2 is used. The 4th order

accuracy from Eq. (4.72)-(4.75) is also based on the uniform spacing Δξ =C.

In order to achieve the highest order accuracy of RI with I = i− 3/2, i− 1/2, i+ 1/2,
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the approximation of each term in Eq. (4.73) using the same points is given below:

μI =
n

∑
l=m
CIl μi+l, (4.76)

∂u
∂ξ

|I = 1
Δξ

s

∑
l=r
DIl ui+l, (4.77)

∂u
∂η

|I =
n

∑
l=m
CIl

∂u
∂η

|i+l, j (4.78)

where

∂u
∂η

|i, j = 1
Δη

q

∑
l=p
Ccl ui, j+l, (4.79)

By choosing different ranges for (m,n),(r,s),(p,q) and different coefficientsCIl ,D
I
l ,C

c
l ,

one can obtain different order accuracy approximation to the viscous terms. The principle

of choosing (m,n),(r,s),(p,q) is to ensure that the approximation of ∂R
∂ξ |i in Eq. (4.72)

is a central differencing. For example, let (m,n) = (−2,1),(r,s) = (−3,2),and (p,q) =

(−2,2), and they give

μI =
n

∑
l=m
CIl μi+l +O(Δξ 4), (4.80)

∂u
∂ξ

|I = 1
Δξ

s

∑
l=r
DIlui+l+O(Δξ 5), (4.81)
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∂u
∂η

|I =
n

∑
l=m
CIl

∂u
∂η

|i+l, j+O(Δξ 4,Δη4), (4.82)

where

∂u
∂η

|i, j = 1
Δη

q

∑
l=p
Ccl ui, j+l+O(Δη4) (4.83)

the coefficientsCIl ,D
I
l ,C

c
l can be obtained by Taylor’s series expansion and are given in

Tables 4.1-4.3. For example,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μi−3/2 = 1
16(5μi−2+15μi−1−5μi+ μi+1)+O(Δξ 4)

μi−1/2 = 1
16(−μi−2+9μi−1+9μi−μi+1)+O(Δξ 4)

μi+1/2 = 1
16(μi−2−5μi−1+15μi+5μi+1)+O(Δξ 4)

(4.84)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ |i−3/2 = 1

Δξ ( 71
1920ui−3− 141

128ui−2+
69
64ui−1+

1
192ui− 3

128ui+1+
3
640ui+2)+O(Δξ 5)

∂u
∂ξ |i−1/2 = 1

Δξ (− 3
640ui−3+

25
384ui−2− 75

64ui−1+
75
64ui− 25

384ui+1+
3
640ui+2)+O(Δξ 5)

∂u
∂ξ |i+1/2 = 1

Δξ (− 3
640ui−3+

3
128ui−2− 1

192ui−1− 69
64ui+

141
128ui+1− 71

1920ui+2)+O(Δξ 5)
(4.85)

The other terms are determined similarly. For comparison, the terms used in Ref. [110,

111] by De Rango and Zingg et al. are given as the following,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
μi−3/2 = 1

16(−μi−3+9μi−2+9μi−1−μi)+O(Δξ 4)

μi−1/2 = 1
16(μi−2+9μi−1+9μi−μi+1)+O(Δξ 4)

μi+1/2 = 1
16(μi−1+9μi+9μi+1−μi+2)+O(Δξ 4)

(4.86)
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ |i−3/2 = 1

24Δξ (−ui−3−27ui−2+27ui−1−ui)+O(Δξ 4)

∂u
∂ξ |i−1/2 = 1

24Δξ (−ui−2−27ui−1+27ui−ui+1)+O(Δξ 4)

∂u
∂ξ |i+1/2 = 1

24Δξ (−ui−1−27ui+27ui+1−ui+2)+O(Δξ 4)

(4.87)

Compare Eqs. (4.84),(4.85) and Eqs. (4.86),(4.87), it can be seen that μI in present

paper has the same accuracy order, as that of De Rango and Zingg et al., but has small

stencil width (i− 2, · · · , i+ 1), ∂u
∂ξ |I has the same stencil width, but obtains one accuracy

order higher than that in Ref. [110, 111].

Table 4.1: The coefficients ofCIl
I CI−2 CI−1 CI0 CI1

i−3/2 5/16 15/16 -5/16 1/16
i−1/2 -1/16 9/16 9/16 -1/16
i+1/2 1/16 -5/16 15/16 5/16

Table 4.2: The coefficients of DIl
I DI−3 DI−2 DI−1 DI0 DI1 DI2
i−3/2 71/1920 -141/128 69/64 1/192 -3/128 3/640
i−1/2 -3/640 25/384 -75/64 75/64 -25/384 3/640
i+1/2 -3/640 3/128 -1/192 -69/64 141/128 -71/1920

Table 4.3: The coefficients ofCcl
Cc−2 Cc−1 Cc0 Cc1 Cc2
1/12 -8/12 0 8/12 -1/12

It can be proved that the scheme Eq. (4.72) is symmetric with respect to cell i. For

example, the coefficients of μi−2ui−3, μi+2ui+3, μi−1ui−2, and μi+1ui+2 can be found as

(in the following formula, C̃Il and D̃
I
l are the coefficients of μi+l , ui+l in RI for R̃i+1/2,

respectively. It’s clear that there are C̃Il =CI−1l−1 and D̃
I
l = DI−1l−1, α̃I = αI−1, I = i−1/2, i+
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1/2, i+3/2):

Ci−2,i−3 = −∑i+1/2I=i−3/2αICI−2D
I
−3

= −[
(−124 ) · 516 · 71

1920 + 26
24 · (−116 ) · (−3

640)+(−124 ) · 116 · (−3
640)

]
= 7
46080

Ci+2,i+3 = ∑i+3/2I=i−1/2 α̃IC̃I2D̃
I
3

= (−124 ) · 116 · 3
640 + 26

24 · (−116 ) · 3
640 +(−124 ) · 516 · (−71

1920)

= 7
46080

Ci−1,i−2 = ∑i+3/2I=i−1/2 α̃IC̃I−1D̃
I
−2−∑i+1/2I=i−3/2αICI−1D

I
−2

= (−124 ) · 516 · 71
1920 + 26

24 · (−116 ) · (−3
640)+(−124 ) · 116 · (−3

640)

−[
(−124 ) · 1516 · (−141128 )+ 26

24 · 916 · 25384 +(−124 ) · (−516 ) · 3
128

]
= − 479

5760

Ci+1,i+2 = ∑i+3/2I=i−1/2 α̃IC̃I1D̃
I
2−∑i+1/2I=i−3/2αICI1D

I
2

= (−124 ) · (−516 ) · (−3
128)+ 26

24 · 916 · (−25384 )+(−124 ) · 1516 · 141128

−[
(−124 ) · 116 · 3

640 + 26
24 · (−116 ) · 3

640 +(−124 ) · 516 · ( −71
1920)

]
= − 479

5760

So we have Ci−2,i−3 = Ci+2,i+3, Ci−1,i−2 = Ci+1,i+2, and so on. Hence the scheme Eq.

(4.72) is symmetric with respect to grid node i. The symmetry of central differencing for
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Eq. (4.72) satisfies the diffusion property of the viscous flux.

Next, we prove that the order of accuracy given by Eq.(4.75) is satisfied. Take the term

T− = μ∂u/∂ξ in Eq.(4.75) as the example,

In R̃i−1/2, at I = i−3/2, based on Taylor’s series expansion

T−
i−3/2 = ∑nl=mC

I
l μi+l(

1
Δξ ∑sl=r D

I
l ui+l)

=
[
μi−3/2+AIμ

(4)
i−3/2Δξ 4+O(Δξ 5)

][
∂u
∂ξ |i−3/2+O(Δξ 5)

]
= μi−3/2 ∂u

∂ξ |i−3/2+AIμ
(4)
i−3/2

∂u
∂ξ |i−3/2Δξ 4+O(Δξ 5)

AI is the coefficient of Taylor’s series expansion.

The corresponding term T+ in R̃i+1/2 is at I = i−1/2, and

T+
i−1/2 = ∑nl=mC̃

I
l μi+1+l(

1
Δξ ∑sl=r D̃

I
l ui+1+l)

=
[
μi−1/2+ ÃIμ

(4)
i−1/2Δξ 4+O(Δξ 5)

][
∂u
∂ξ |i−1/2+O(Δξ 5)

]
= μi−1/2 ∂u

∂ξ |i−1/2+ ÃIμ
(4)
i−1/2

∂u
∂ξ |i−1/2Δξ 4+O(Δξ 5)

Note that AI = ÃI , hence

T+
i−1/2−T−

i−3/2 = μi−1/2
∂u
∂ξ

|i−1/2−μi−3/2
∂u
∂ξ

|i−3/2+O(Δξ 5)

The other two terms can be analyzed similarly as above, then Eq.(4.75)

1
Δξ

(R̃i+1/2− R̃i−1/2) = R
′
(ξi)+O(Δξ 4)

is proved, i.e. the constructed schemes are formally 4th order accuracy.
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4.6 Implicit Time Integration

When a unsteady solution is considered, higher order approximation for the time derivative

is desirable. For unsteady flow, Jameson formulated so called the 2nd order dual time

stepping scheme [112]. By introducing a pseudo time term, the unsteady problem at each

physical time step is treated as a steady state problem for pseudo time. Without losing time

accuracy, the dual time stepping scheme can greatly improve the computation efficiency by

enhancing diagonal dominance [113].

4.6.1 Implicit Time Accurate Flow Solver

The time accurate governing equations are solved using dual time stepping method sug-

gested by Jameson [112]. To achieve high convergence rate, the implicit pseudo time

marching scheme is used with the unfactored Gauss-Seidel line relaxation [95]. The physi-

cal temporal term is discretized implicitly using a three point, backward differencing as the

following:

∂Q
∂ t

=
3Qn+1−4Qn+Qn−1

2Δt
(4.88)

where n− 1, n and n+ 1 are three sequential time levels, which have a time interval of

Δt. The first-order Euler scheme is used to discretize the pseudo temporal term to enhance

diagonal dominance. The semi-discretized equations of the governing equations are finally

given as the following:
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[( 1
Δτ + 1.5

Δt
)
I−

(
∂R
∂Q

)n+1,m]
δQn+1,m+1

= Rn+1,m− 3Qn+1,m−4Qn+Qn−1
2Δt

(4.89)

where the Δτ is the pseudo time step, R is the net flux evaluated on a grid point using the

fifth-order WENO scheme.

4.6.2 Implicit Structural Solver

To solve the structural equations with the present CFD solver [99] in a fully coupled manner

[28], the decoupled structural equations are integrated using the same method as the flow

governing equations(4.89) within each physical time step:

( 1
Δτ I+

1.5
Δt M+K

)
δSn+1,m+1

= qn+1,m+1−M 3Sn+1,m−4Sn+Sn−1
2Δt −KSn+1,m

(4.90)

4.6.3 Flow-Structure Coupling

The fully coupled procedure for fluid-structure interaction (FSI) simulation is achieved by

removing time lag between the fluid flow and the structure as sketched in Fig. 4.2. Within

each physical time step(m), the flow and structural governing equations are solved without

time lag via every successive pseudo time step until the net flux residual R given by Eq.

(4.89) satisfies the prescribed convergence criteria(ε). Note the residual q for the structure

equation (3.76) gets converged quickly within a few steps. Therefore, the convergence

of FSI is determined according to R. After the convergence criteria is reached, the fluid-

structural interaction goes to next physical time step, n+1.
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Figure 4.2: Procedure of fully coupled fluid-structure interaction



Chapter 5

Validation of DDES

Turbulence modeling is critical for drag prediction, in particular for surface friction drag.

The commonly used turbulencemodels today are still the Reynolds averaged Navier-Stokes(RANS)

models, which can not accurately predict the flows with large separations. RANS models

treat large eddy as isotropic structures and are not consistent with the physics. However,

RANS models have their advantage of CPU efficiency and can handle many engineer-

ing problems with calibrated parameters. The recent Detached Eddy Simulation (DES) of

Spalart and Delayed DES are more widely used for their better capability to treat separated

flows.

In addition to turbulence modeling, accurate resolving shock waves and viscous terms

with minimal numerical dissipation is also crucial for skin friction prediction. The high

order numerical schemes, in general higher than 2nd order, are preferred for this purpose.

For numerical simulation of complicated transonic flow fields, it is required that the nu-

merical schemes have the ability of shock capturing and fine-scale feature resolution. Due

to the capability of capturing shock waves and high order accuracy in smooth regions, the

73
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WENO (weighted essentially non-oscillatory) schemes are a desirable option for transonic

flows with shock waves.

The purpose of this chapter is to compare the accuracy and robustness of RANS,

URANS and DDES turbulence models with high order schemes for predicting the lift and

drag of a projectile and a DLR-F6 configuration.

5.1 Projectile

5.1.1 Mesh and Boundary Condition

The projectile simulated in this thesis is a cone-cylinder-finned configuration as shown in

Fig. 5.1. The length of the projectile model is 12.5in and the diameter is 1.25in. The cone

nose is 3.5 in long and the after-body length is 9 in. Four fins are located at the end of

the projectile. Each fin has the dimension of 1.25in in long, 1.25in in height and 1in in

thickness. The Mach number is 0.752 and Reynolds number is 400000.

The computational mesh for the projectile model is in a O-type shape as shown in Fig.

5.2. Two different domain sizes of computational model are tested for considering the effect

of the far-field boundary on the results. One model is 3 times body length away from the

model in all the three directions. The other mesh has a bigger domain, which uses a large

domain mesh surrounding a smaller mesh domain. The final size of the computational

domain is about 40 times of the body length of the projectile in all the directions. To

avoid singular point at the tip of the nose, a small tip ’O-type’ block is created. Fig. 5.2

shows a 3-D view of the full projectile mesh. The total number of grid points of the small

computational domain is about 7 million with 184 blocks. The mesh size of the large
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domain is about 14 million with 328 blocks. Fig. 5.3 shows an expanded view of the grid

in the small mesh. The first wall grid point spacing is at Y+ value of about 1.0 for both the

meshes. The growth rate of the grids away from the solid wall is 1.25.

The total pressure, total temperature and flow angle are specified at computational do-

main inlet as the boundary conditions. The static pressure at the outlet is specified to

determine the freestream Mach number. In the computation, the free stream flow is kept

horizontal. For a flow with an angle of attack(AoA), the mesh is rotated to create the AoA

as demonstrated in Fig. 5.3.

Figure 5.1: Geometry of projectile

Figure 5.2: Surface mesh of the projectile model
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Figure 5.3: Iso view of the mesh

5.1.2 Results Of The Projectile Simulation

The simulations are performed with parallel computing with about 40,000-50,000 cells in

each mesh block. The calculations took about 10 hours to converge for steady simulation

and 168 hours for the unsteady DDES calculation. The unsteady calculation reaches the

stable solution at about 250 characteristic time. The solution residuals are reduced at least 2

orders of magnitude within each physical time step and the aerodynamic coefficients vary

less than 0.1% over the last 100 time steps. The aerodynamic force coefficients are the

determining factor in convergence.

To accurately predict wall friction, the mesh near the solid surface is refined. However,

the quality of the mesh may decrease due to the high aspect ratio as the number of grid

points is increased in the boundary layer. To have a suitable mesh density with accept-

able CPU time and numerical accuracy, three different grid distributions are tested for grid

convergence. The first mesh(Mesh1) is to make sure y+=1 on every solid wall surface,

including the leading edge, the tip surfaces of the fins and solid surface at the leading edge

of the nose. The second one(Mesh2) is to keep the same grid distribution as mesh1, ex-
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cept neglecting the effect of small walls, including the surfaces at the leading edge and the

tips of the fins, and the surface at the leading edge of the nose. Coarse grid distribution

are used on those small wall surfaces and wall function boundary conditions are employed

for Mesh2. To study the effect of y+ on the forces calculation, a third computational mesh

(Mesh3) with y+ value equal to 6 is tested. All cases are run at AoA=0◦ with RANS model.

The Mach number using in the grid convergence test is 0.677. The computed axial forces

with different meshes are presented in Table 5.1. We can see that the predicted force and

moment from Mesh1 and Mesh2 are almost the same and closer to experiment data than

that of Mesh3. The computed y+ of Mesh2 and Mesh3 at wall surface are shown in Fig.

5.4. It can be seen that y+=1.0 around the cylinder body are achieved in Mesh2. Therefore,

Mesh2 is used in the unsteady DDES simulation.

To reduce the uncertainty in the drag prediction, two different ways of wall shear stress

calculation are developed. Method 1 is based on the velocity gradient near the wall, in

which the tangential velocity and the distance of the first cell center away from the wall are

calculated. The other method (Method 2) extracts the shear stress directly from the viscous

term of the Navier-Stokes equations. The results are shown in 5.5. It is shown that both

results are in excellent agreement.

Table 5.1: Force and Moment at AoA=0◦, M=0.677
Item CA CN CM_pitch CM_roll
Exp 0.521 0.000 0.000 0.331
Mesh1 0.615 0.000 0.000 0.334
Mesh2 0.618 0.000 0.000 0.334
Mesh3 0.632 0.000 0.000 0.347

The time history of CA, CN, CM_pitching and CM_roll at AoA=0◦ and M=0.752 are

shown in Fig. 5.6. The results of DDES method are compared with those of URANS.
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Figure 5.4: Boundary layer resolving mesh comparison. Left: mesh2, Right: mesh3
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Figure 5.5: Force results of different calculation methods

Both simulations are started from the same RANS results. The predicted drag of DDES

agree better with the experiment than the URANS. The difference of the drag prediction by

DDES and URANS in the subsonic regime indicates that the unsteady wake flow impacts

the upstream side forces. The roll moment from the URANS follows the same trends as

that of DDES.

The DDES force and moment convergence history of CA, CN, CM_pitching and CM_roll

at AoA=4◦ and M=0.752 are shown in Fig. 5.7 and Fig. 5.8. The URANS is used for the

first 2000 time steps and the calculation is switched to DDES. Fig. 5.8 shows that there are
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discontinuities in the convergence histories when the calculation is switched from URANS

to DDES.

The results of RANS, URANS and DDES at AoA=0◦ and M=0.752 are summarized

in Table 5.2. From the table, DDES significantly reduce the axial force prediction error

to about 4.5%, URANS has an error of 12.3%, and RANS has an error of 16.6%. DDES

is demonstrated to have the best accuracy among the three methods. The URANS gives

more accurate results than the steady state RANS because the vortex vortex shedding in

the wake region is unsteady. All three methods have excellent agreement in predicting

the rolling moment. The predicted normal force and pitching moment are close to zero at

AoA=0◦ as the experiment since the geometry is mostly axi-symmetric except the fins that

generate circumferential force.

The comparisons of different methods at AoA=4◦ and M=0.752 are shown in Table 5.3.

The axial force predicted by DDES has an error of 3.9% compared with the experiment,

significantly more accurate than that predicted by URANS with an error of 12%. For the

nomal forces, the URANS and DDES have the deviation about 10.0% and 8.7% respec-

tively. The DDES is again more accurate than the URANS even though the deviation is

greater than the axial force.

Table 5.2: Force and Moment at AoA=0◦ and M=0.752
Item CA error CN error CM_pitch error CM_roll error
Exp 0.530 0.0 0.0 0.333
RANS 0.618 16.6% 0.0 0.0 0.0 0.0 0.336 1.0%
URANS 0.595 12.3% 0.0 0.0 0.0 0.0 0.336 1.0%
DDES 0.554 4.5% 0.0 0.0 0.0 0.0 0.334 0.3%

Table 5.4 and Table 5.5 present the the breakdowns of the normal and axial forces

of each component including the projectile main body, the base surface, and the fins. In
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Figure 5.6: Coefficient of axial force(CA), normal force(CN), pitching moment(CM_pitch)
and rolling moment(CM_roll) at AoA=0◦ and M=0.752, predicted by URANS and DDES
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Figure 5.7: Force coefficient at AoA=4◦ and M=0.752 with DDES

the table, CLp is the lift contributed by pressure, CLv is the lift contributed by viscous

shear stress lift, CDp is the drag contributed by pressure and CDv is the drag contributed by
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Figure 5.8: Moment coefficient at AoA=4◦ and M=0.752 with DDES

Table 5.3: Force and Moment at AoA=4.0◦ and M=0.752
Item CA error CN error CM_pitch error CM_roll error
Exp 0.516 1.040 -8.48 0.362
RANS 0.635 23.1% 1.122 7.3% -9.226 8.8% 0.384 6.1%
URANS 0.578 12.0% 1.144 10.0% -9.464 11.6% 0.378 4.4%
DDES 0.535 3.9% 1.132 8.7% -9.366 10.5% 0.376 3.9%

the viscous shear stresses. The predicted friction drags are almost the same between the

URANS and DDES for both the case of at AoA=0◦ or AoA=4◦. The reason is that within

the wall boundary layer, URANS is also used by DDES. For the predicted pressure drag,

URANS and DDES are quite different. At AoA=0◦, CDp predicted by URANS is about

10% greater than that of DDES. At AoA=4◦, it is about 9.5% larger. The pressure value

at the base redicted by DDES is about 4% greater than that of URANS, which results in a

smaller overall drag since the predicted drag of the main body are about the same. Drag

contribution of the fin is about 36% of the total drag at AoA=0◦ and is increased to 41% at

AoA=4◦. The pressure drag predicted by DDES is smaller than that of URANS.

Fig. 5.9 shows the Mach contours obtained by URANS and DDES at AoA=0◦ and

M=0.752 at the mid-plane. Both plots show similar flow structures over the projectile. The

vortex shedding at the trailing edge of the projectile is captured as shown in Fig. 5.10. The
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flow field at AoA=4◦ has similar flow structure as the case at AoA=0◦. Fig. 5.11 shows the

velocity vector field behind the fins. It shows the fin tip vortices due to the lift that creates

the the roll moment and cause the body to spin with Magus effect. Fig.5.12 illustrates

instantaneous entropy contours, which indicates that the wake region suffers high loss due

to the base flow. Fig 5.13 is the Mach number contour in the wake region for both the

AoA=0◦ and 4◦. The wakes of the fins merge with the wake of the base surface.

Fig.5.14 shows the instantaneous static pressure contour predicted by DDES atM=0.752.

The base area has very low pressure that contributes to the base drag. Fig. 5.15 shows the

surface pressure contours and the surface pressure distributions of the mid plane on the

lower and upper side. At AoA=0◦, the pressure is symmetric with no lift. The pressure

decreases rapidly from leading edge to the cone-cylinder transition point due to the con-

verging area, and then increase rapidly after that due to fast area expansion. At AoA= 4◦,

the pressure variation trend along the body is similar to that at AoA= 0◦, but the pressures

on the upper and lower side is largely different due to generating the lift. The fin sur-

face pressure coefficients predicted by DDES at AoA=0◦ and 4◦ are shown in Fig.5.16 and

Fig.5.17, respectively. At AoA=0◦, the fins do not generate lift and the pressure distribu-

tions on the 4 fins are the same. At AoA=4◦, the fin surface pressure are not symmetric due

to the lift generation.
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Table 5.4: Force contributions of different parts at AoA=0◦ and M=0.752
Item Method CLp CLv CDp CDv

Cylinder URANS 0.000 0.000 2.558 0.100
DDES 0.000 0.000 2.558 0.100

Base URANS 0.000 0.000 -2.268 0.000
DDES 0.000 0.000 -2.303 0.000

Fins URANS 0.000 0.000 0.150 0.056
DDES 0.000 0.000 0.145 0.055

Table 5.5: Force contributions of different parts at AoA=4◦ and M=0.752
Item Method CLp CLv CDp CDv

Cylinder URANS 0.061 0.001 2.563 0.101
DDES 0.058 0.001 2.562 0.101

Base URANS 0.158 0.000 -2.264 0.000
DDES 0.161 0.000 -2.300 0.000

Fins URANS 0.884 -0.004 0.204 0.052
DDES 0.876 -0.004 0.198 0.052

Figure 5.9: InstantaneousMach number contour at AoA=0◦ andM=0.752, left for URANS,
right for DDES
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Figure 5.10: Flow field around the body and near the tail at AoA=4◦ and M=0.752, left for
mach contour, right for streamline

Figure 5.11: Vortex structure around the fin

Figure 5.12: Entropy contour: left for AoA=0◦, right for AoA=4◦
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Figure 5.13: Mach line contours: left for AoA=0◦, right for AoA=4◦

Figure 5.14: Static pressure contour: left for AoA=0◦, right for AoA=4◦

Figure 5.15: Computed Surface Pressure: left for AoA=0◦, right for AoA=4◦
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Figure 5.16: Computed pressure coefficient for AoA=0◦
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5.2 Wing body configuration

5.2.1 Results and Discussion

In this section, the DLR-F6 wing-body configuration as shown in Fig. 5.18, used by the sec-

ond AIAA Drag Prediction Workshop is calculated. The Mach number is 0.75, Reynolds

number based on the mean aerodynamic chord is 3.0× 106. The total pressure and total

temperature are given at computational domain inlet as the boundary conditions. The static

pressure at the outlet of computational domain is to make the inlet Mach number matching

the experimental value. In the far field, zero gradient boundary condition is used. The un-

steady DDES calculation reaches the stable solution at about 250 characteristic time. The

solution residuals are reduced at least 2 orders of magnitude within each physical time step

and the aerodynamic coefficients vary less than 0.1% over the last 100 time steps. The

aerodynamic coefficients were the determining factor in convergence in all cases.

5.2.2 Grid Convergence Study

The community of the drag prediction workshop had provided a series of grids that include

1-to-1 connected multiblock grid, structural overlap grid, and unstructured grid. The 1-to-1

point matched grid from ICEM is used as a baseline mesh for computation in this sec-

tion. Because the mesh topologies near the wing tip from ICEM software are very complex

and the mesh size of each block is varied distinctly, computational grids are regenerated to

have simpler mesh-topologies and better load balance for parallel computation. The overall

topology of the new mesh employs a O-type topology as shown in Fig. 5.19. The compu-

tational domain models only half of the configuration and symmetry boundary conditions
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are applied to the symmetrical plane. In the new mesh, the first layer of blocks used for

the viscous boundary layer computation, is kept the same as the supplied mesh. The mesh

topologies at the nose, wing tip and tail of the fuselage are changed to the O-type topology,

as shown in Fig. 5.20. The length of the first grid cell in surface normal direction is 0.001

mm. This value was found to be sufficient to guarantee a value of y+=1. In order to con-

duct a grid convergence study, three levels of mesh sizes have been generated. The coarse

mesh model has a total of 2184140 grid cells, in which the number of grid points in the

boundary layer is 29. The medium mesh has a total of 6364462 grid cells with 41 points

in the boundary layer blocks. And there are 49 grid points in first layer of blocks of in the

third level of mesh, resulting a total number of 8410092 grid cells.

All the grid models were run with DDES method at AoA=0.49◦. The computed results

are shown in Table. 5.6. For comparison, the experimental data is also listed in the same

table. In the table, CL is lift coefficient and CD is drag coefficient. The CL comparison be-

tween DDES and experiment is given by relative errors. And theCD comparison is given by

relative drag counts, in which 1 count is 0.0001. It can be seen that there is a linear variation

in CL with the mesh refinement, which indicates that the three cases achieve grid conver-

gence for DDES method. However, the grid convergence test of DDES is not achieved in

CD prediction. The CD from medium mesh shows about 28 drag counts(0.0028) deviated

from experiment and has the maximum relative error of 9.559%. Whereas the coarse level

grid has the lowest relative errors of 3.347% with about 10 drag counts. Compared with

the coarse and medium mesh model, the fine mesh model provides the lowest relative error

inCL prediction and about 15 drag counts in CD prediction.

The convergence histories of CL and CD are shown in Fig. 5.21 and Fig. 5.22 re-
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Table 5.6: Lift, drag coefficients from DDES at AoA=0.49
Item CL error, % CD ΔCD
Exp 0.498400 0.000 0.029396 0
Coarse 0.479830 3.726 0.030380 10
Medium 0.482161 3.258 0.032206 28
Fine 0.485735 2.541 0.030941 15

spectively. Results of the three different mesh size are plot. It is seen that the calculation

converged after about 100 non-dimensional time. The CL curve predicted by the DDES

method is about the same as URANS. And the CD value predicted by DDES tend to lower

than that of URANS.

Fig. 5.23 to Fig. 5.30 are time averaged the coefficient of pressure at different wing

sections at AoA=0.49◦. Each figure shows the DDES results of the coarse, medium and

fine grid models. Overall, the numerical results predicted by using DDES agree very well

with the experiments, including the shock wave strength and location along the span. All

mesh models show large errors at 0.15 span, where there is a separation at wing-body

conjunction. This predicted separation location is consistent with the conclusion of the

second drag prediction workshop, which concluded that it was the separated flow regions

at wing/body junctures cause large error of predicted results and make it difficult to draw

meaningful conclusions. It appears that the separation bubble still affect the present results

of DDES. Compared to the coarse mesh model, the medium and fine mesh model provide

slightly better Cp results at lower span in the 50% chordwise location. The shock location

is well resolved in Fig. 5.25 and Fig. 5.26, in particular with the medium and fine mesh.

Shock location moves more upstream in the mid-span.

Table. 5.7 lists the two components of total force coefficients, the pressure force coeffi-

cient and the friction force coefficient, predicted by using DDES on the sequence of grids.
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In the table, px, py and pz are the force coefficients contributed by pressure in x, y, and z

direction respectively. And vx, vy, vz are the force coefficients contributed by the viscous

shear stresses in x, y, and z direction respectively. The force in x direction contributes to

the drag. The force in z direction is lift. The force in y direction is the lateral force, which

should be zero approximately when the whole configuration is considered. The forces are

integrated at time step of 6000, which is different from the time averaged results in Table.

5.6. The breakdown of the force may help to identify the main source of the errors in lift

and drag prediction. It can be seen that the general trends of pressure and viscous drag data

are consistent with the total drag in mesh refinement study. The pressure drag is converged

based on mesh size. It is the friction drag still varies with the mesh size. The table also

shows that the viscous drag contribution is about 82% of the pressure drag, a little smaller

but in the same order of magnitude. This also indicates that there is a large room to reduce

the total drag by reducing the pressure drag. While the viscous lift contribution to the total

lift is negligible compared with the lift generated by pressure.

Table 5.7: Force components of different mesh at AoA=0.49◦
Item px py pz vx vy vz
Coarse 0.016301 4.769143 0.479410 0.014063 -0.000113 -0.000139
Medium 0.017135 4.767384 0.478435 0.015037 -0.000008 -0.000077
Fine 0.017158 4.766717 0.481208 0.013719 -0.000072 -0.000108

The surface pressure contours and streamlines of three level of mesh sizes are shown in

Fig. 5.31. The plots compares the wing/body juncture flow at upper-surface wing trailing

edge at AoA=0.49◦ by using DDES method. The separation bubbles are clearly seen in all

three mesh simulations and the predicted separation bubbles are about the same. But the

fine mesh resolves more detailed flow structures.
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5.2.3 Effect of Turbulence Modeling

Although this thesis focus on DDES method for aerodynamic drag prediction, it is use-

ful to compare the results with the commonly used steady RANS model and unsteady

RANS(URANS) model. Both RANS and URANS employ the one-equation Spalart-Allmaras

(SA) model. Table. 5.8 and Table. 5.9 summarized the results of RANS and URANS at

AoA=0.49◦ respectively. The predicted CL results of both RANS and URANS show good

agreement with experiment. The maximum relative errors are less than 3% in all test cases.

Still, the coarse mesh provide better results than medium and fine mesh. It is noted that

drag counts predicted by DDES shown in Table. 5.6 are less than the drag counts of both

RANS and URANS, in particular for the coarse and medium mesh.

Table 5.8: Lift, drag coefficients from RANS at AoA=0.49◦
Item CL errors, % CD ΔCD
Exp 0.498400 0.000 0.029396 0
Coarse 0.489087 1.869 0.030937 15
Medium 0.484887 2.711 0.032552 32
Fine 0.486100 2.468 0.030993 16

Table 5.9: Lift, drag coefficients from URANS at AoA=0.49◦
Item CL errors, % CD ΔCD
Exp 0.498400 0.000 0.029396 0
Coarse 0.488338 2.019 0.030830 14
Medium 0.482526 3.185 0.032527 31
Fine 0.485611 2.566 0.031167 18

Table. 5.10 lists the total drag coefficients as well its two components, the pressure drag

coefficient and the friction drag coefficient for fine mesh model, for all the three different

turbulence modeling methods. The predicted friction drag counts among the three turbu-

lence models are less than one count for the case at AoA=0.49◦. The reason appears to be

that they all employ the same turbulence modes within the wall boundary layer. For the
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predicted pressure drag that is more affected by the flow structures outside of the bound-

ary layer, DDES provides about 2 drag counts less than RANS and URANS. The RANS

methods has almost the same px value as that of the URANS method, which indicates that

unsteady flow effect is not important for the wing body configuration model.

Table 5.10: Force components of different turbulence modeling method at AoA=0.49◦
Item px py pz vx vy vz
RANS 0.017395 4.766450 0.492607 0.013808 -0.000085 -0.000169
URANS 0.017394 4.766713 0.482234 0.013736 -0.000091 -0.000131
DDES 0.017158 4.766717 0.481208 0.013719 -0.000072 -0.000108

The MUSCL and WENO schemes are implemented in current codes for comparison.

The comparisons of different reconstruction schemes are listed in Table. 5.11. MUSCL3

has 3rd order accuracy for the inviscid flux without using any limiters. WENO3 and

WENO5 are the 3rd and 5th order of WENO schemes respectively. The results are from

steady state RANS simulation at AoA=0.49◦. It can be seen from the table that the pre-

diction by using the WENO5 scheme has larger errors in CL than that with the 3rd order

schemes. And the WENO5 scheme predicts about 2 drag counts lower than those 3rd order

schemes and is closer to the experiment.

Table 5.11: Lift, drag coefficient comparisons at AoA=0.49◦ by using RANS method
Item CL errors, % CD ΔCD
Exp 0.498400 0.000 0.029396 0

MUSCL3 0.492437 1.196 0.031203 18
WENO3 0.491657 1.353 0.031180 18
WENO5 0.486100 2.468 0.030993 16

Fig. 5.32 are the coefficient of pressure at three typical wing spans at AoA=0.49◦. At

0.15 span, all the turbulence modeling methods captured the separation bubble. The DDES

gives the best prediction at the tailing edge separation region, which indicates the advantage
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as it is designed to have. The pressure predicted by the three methods are almost the same

at outer span where there is no flow separation.

Fig. 5.33 shows the lift and the drag versus different angle of attacks. TheCL predicted

by all the methods agree very well with the experiment. The CL errors of URANS and

DDES method become larger at higher positive angle of attack. Regarding the CD curve,

numerical results match the experiment at positive angle of attack and show large errors at

negativeAoAwith the maximum error less than 25 counts. The DDESmodel again shows a

better agreement between the predicted and measured drag than RANS and URANS model

at low AoA about 15 counts.

5.3 Conclusions

This chapter compares the accuracy and robustness of DDES, RANS, and URANS tur-

bulence modeling using high order schemes for predicting the lift and drag of the pro-

jectile and DLR-F6 configuration. The implicit time marching method with unfactored

Gauss-Seidel line relaxation is used with a 5th order WENO finite difference scheme for

Navier-Stokes equations The viscous terms are discretized using a 4th order conservative

central differencing. The effect of grid density, spatial difference schemes and turbulence

modeling methods are studied.

For a projectile at M=0.752, AoA=0◦ and 4◦, the DDES significantly reduces the axial

force prediction error to about 4%, whereas the URANS has an error of 12%, and the

RANS has an error of 16% to 23%. The primary difference of the drag prediction between

the DDES and URANS is the pressure drag prediction in the base region. The DDES is
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demonstrated to be superior to the URANS for the projectile flow prediction due to more

accurate base large vortex structures and pressure simulation.

In the simulation of wing body configuration, grid convergence in the prediction of lift

coefficients is achieved by using DDES method, but the CD still has variation of over 10

counts. The CD from medium mesh shows about 28 drag counts(0.0028) deviated from

experiment and has the maximum relative error of 9.559%. Compared to the coarse and

medium mesh, the fine mesh model provides the lowest error in CL prediction and about

15 drag counts in CD prediction. All meshes show large surface pressure deviation at 0.15

span, which is located at separation region of the wing-body conjunction.

The predictedCL results of both RANS and URANS show good agreement with exper-

iment. The maximum errors are less than 3% in all test cases. The coarse mesh provide

better results than medium and fine mesh. The drag counts predicted by the DDES are less

than the drag counts of both RANS and URANS, which indicates the advantage of DDES

in turbulence modeling.

The predicted friction drag counts difference between the URANS and DDES is less

than one count for the case at AoA=0.49◦. The reason may be that DDES method employ

the same turbulence modes as URANS within the wall boundary layer. For the predicted

pressure drag, DDES provides about 2 drag counts less than RANS and URANS. The

prediction by using the 5th WENO scheme provides lowerCL and drag counts than the 3rd

order schemes.

Since the same mesh provided by the workshop are used for the RANS model and

DDES model, even though the mesh is generated for RANS models only. In other words,

the DDES conducted in this thesis should be treated as a rough reference instead of being
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conclusive. A more rigorous mesh refinement study for DDES drag prediction will be

conducted as the next step.
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Figure 5.17: Computed pressure coefficient for AoA=4◦

Figure 5.18: Geometry of wing-body configuration
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Figure 5.19: Meshes on wall and far field

Figure 5.20: Mesh topology comparison
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Figure 5.21: Time history of lift coefficient. Left: Coarse mesh; Middle: Medium mesh;
Right: Fine mesh
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Figure 5.22: Time history of drag coefficient. Left: Coarse mesh; Middle: Medium mesh;
Right: Fine mesh
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Figure 5.23: Wing pressure coefficient comparison using DDES at 0.15 semispan. Left:
Coarse mesh; Middle: Medium mesh; Right: Fine mesh
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Figure 5.24: Wing pressure coefficient comparison using DDES at 0.239 semispan. Left:
Coarse mesh; Middle: Medium mesh; Right: Fine mesh
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Figure 5.25: Wing pressure coefficient comparison using DDES at 0.331 semispan. Left:
Coarse mesh; Middle: Medium mesh; Right: Fine mesh
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Figure 5.26: Wing pressure coefficient comparison using DDES at 0.377 semispan. Left:
Coarse mesh; Middle: Medium mesh; Right: Fine mesh
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Figure 5.27: Wing pressure coefficient comparison using DDES at 0.411 semispan. Left:
Coarse mesh; Middle: Medium mesh; Right: Fine mesh

X/C

C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

DDES
Experiment

y/b=0.514

X/C

C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

DDES
Experiment

y/b=0.514

X/C

C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

DDES
Experiment

y/b=0.514

Figure 5.28: Wing pressure coefficient comparison using DDES at 0.514 semispan. Left:
Coarse mesh; Middle: Medium mesh; Right: Fine mesh
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Figure 5.29: Wing pressure coefficient comparison using DDES at 0.638 semispan. Left:
Coarse mesh; Middle: Medium mesh; Right: Fine mesh
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Figure 5.30: Wing pressure coefficient comparison using DDES at 0.847 semispan. Left:
Coarse mesh; Middle: Medium mesh; Right: Fine mesh
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Figure 5.31: Surface pressure and streamline comparisons of different mesh sizes
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ing the effect of turbulence modeling
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Chapter 6

Transonic Wing Flutter

The purpose of this chapter is to calculate the full AGARD wing flutter boundary to in-

vestigate the flutter mechanism using high order schemes and DDES with a fully coupled

FSI. In particular, the focus is to understand the sonic dip phenomenon in the transonic

regime. The work appears to be the first effort using DDES with high order shock captur-

ing schemes to simulate transonic wing flutter. Benefiting from this high fidelity transonic

flutter wing simulation, some new observations and explanation are given for the sonic dip

mechanism, including the anticlimax of torsional mode and decrease of pitching moment

at sonic dip due to shock oscillation.

6.1 Computational Model

6.1.1 Geometry of AGARD Wing 445.6

A limited number of AGARD standard wing configurations were tested [2] in order to

promote the evaluation of existing and emerging unsteady aerodynamics codes and meth-

104
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Table 6.1: AGARD Wing 44.5 Weakend model 3 [2]

Airfoil section NACA 65A004
Measured panel mass(m̄) [kg] 1.8627

Panel span(H) [m] 0.762
Sweep angle at half chord [deg] 43.15

Root chord(bs) [m] 0.559
Tip chord(bt) [m] 0.3682
Aspect ratio 1.65

ods for flutter from subsonic to supersonic regime. In this study, the AGARD Wing

445.6 Weakend 3 is used for flutter simulation. This wing model has the symmetric

NACA65A004 airfoil with a 4% thickness, and the wing structural details are listed in

Table 6.1.

6.1.2 Mesh

The O-mesh topology is used as shown in Fig. 6.1. The outer span boundary away from

the wing tip is about 10 span length of the wing. Total 18 partitioned blocks are used for

parallel computation. The 1st grid spacing away from the the wing surface is set to yield

y+ less than unity. The inlet and outlet boundary is located 50 root chords away from the

wing.

6.1.3 Mode Shape

The first five mass normalized mode shapes in the report [2] are used, which are displayed

in Fig. 6.2. In the plot, the mode shapes are interpolated from structural nodes to CFD mesh

nodes by using radial basis function method so that the grids in the interface between fluid

and structure are one to one connected. Among the five modes, the 1st, 3rd and 5th mode
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are bending mode, and 2nd and 4th mode are torsion mode. As the initial conditions to start

the structure vibration, 1st mode initial velocity of the structure in the modal coordinates is

prescribed with a very small value whereas other modal displacements are set to zero. The

uniform modal damping ratio(ζ ) of 0.0 is applied for all flutter computations to isolate the

aerodynamic damping. The unsteady flutter computation is started using the initialized flow

field obtained by the unsteady CFD simulation without FSI. The residual in each physical

time step is reduced by three orders of magnitude, which is achieved usually within 30

iterations.

Figure 6.1: Computational mesh of 289×64×77 for AGARD Wing 445.6 Weakend 3

6.2 Results and Discussion

6.2.1 Computational Mesh Test

Mesh convergence test is done for Mach number of 1.072. Three mesh sizes were tested;

mesh A=129 (around airfoil)×49(normal to the surface)×49(span), mesh B=137×90×60,

mesh C=289×64×77. When the mesh is changed, the mode shapes corresponding to the

surface mesh coordinates are interpolated by a radial basis function interpolation. Fig. 6.3
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Mode 1, f = 9.58992 Hz Mode 2, f = 38.165 Hz Mode 3, f = 48.3482 Hz

Mode 4, f = 91.5448 Hz Mode 5, f = 118.1132 Hz

Figure 6.2: The first 5 mode shapes of AGARD Wing 445.6 Weakend 3 [2]

shows the modal displacements of mode 1 for different meshes. The flutter velocity index

Vf used for mesh test is 0.30. The predicted responses for mode 1 using mesh B are well

converged with mesh C. Therefore, mesh C is chosen for flutter simulations in this study.
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Figure 6.3: Mesh convergence test for M = 1.072,Vf = 0.30
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6.2.2 Flutter Boundary

The computed flutter velocity index and frequency compared with experimental data at

flutter boundary for six free-stream Mach numbers are shown in Fig. 6.4. Overall, the

computed flutter boundary points are in good agreement with the experiment. In particu-

lar, the predicted flutter boundaries at the two supersonic conditions match the experiment

accurately. The sonic dip near M = 1.0 in the flutter map is very well captured for both

the speed index and frequency by the computation. In the frequency plot in Fig. 6.4, the

frequency ratio is defined by the ratio of the first mode frequency over the first natural tor-

sional frequency(second mode) during the neutral vibration. The simulation over-predicts

the frequency ratio with maximum deviation about 3.0% for Mach number less than 1.141.

The predicted modal displacements for Mach number of 0.499, 0.901, 0.960 and 1.072

with different flutter velocity index(Vf ) are displayed in Fig. 6.5, 6.6, 6.7 and 6.8 respec-

tively. Three different responses, including damped, neutral, diverging are shown in each

of the plots on the left, middle, and on the right. Take the transonic dip M=0.96 as an

example at Vf = 0.2961, the response decays in time, whereas at Vf = 0.3021 the response

is divergent. A neutrally stable point, the flutter boundary, is captured at Vf = 0.2991. The

damped oscillation with Vf = 0.2961 is 1.0% below the measured flutter boundary. It in-

dicates that the present FSI approach has very good accuracy and is sensitive to a small

change of the flutter speed index.
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Figure 6.5: Modal displacements for M = 0.499



110

Dimensionless time

G
en

er
al

iz
ed

di
sp

la
ce

m
en

t

0 50 100 150 200
-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

Mode 1
Mode 2
Mode 3

M=0.901
Vf=0.3574

Dimensionless time

G
en

er
al

iz
ed

di
sp

la
ce

m
en

t

0 50 100 150 200
-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

Mode 1
Mode 2
Mode 3

M=0.901
Vf=0.3482

Dimensionless time

G
en

er
al

iz
ed

di
sp

la
ce

m
en

t

0 50 100 150 200
-0.0004

-0.0002

0

0.0002

0.0004

Mode 1
Mode 2
Mode 3

M=0.901
Vf=0.3464

Figure 6.6: Modal displacements for M = 0.901
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Figure 6.7: Modal displacementsM = 0.960
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Figure 6.8: Modal displacements for M = 1.072

The predicted aerodynamic damping coefficients at M = 1.072 are plotted in Fig. 6.9.

The aerodynamic damping can be derived from the logarithmic decrement: δ = 1
n ln

x(t)
x(t+nT ) ,

where x(t) is the amplitude at time t and x(t+nT) is the amplitude of the peak n periods away,

where n is any integer number of successive and positive peaks. Then the damping ratio
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can be calculated by ζ = 1√
1+( 2πδ )2

. The structural damping has been set to zero, so the co-

efficients are the net aerodynamic damping. The flutter occurs with negative aerodynamic

damping. The damping of the response is plotted as a function of the dynamic pressure,

which corresponds to the flutter speed index. The flutter boundary can be determined by a

set of test points. The predicted aerodynamic damping shows that the flutter boundary is at

P3, the dynamic pressure at P3 is about 3100 Pa, which is close to the experimental value

3166 Pa.

As shown in Fig. 6.5, 6.6, 6.7 and 6.8 the generalized amplitude of the first mode at the

neutral point does not vary much with the Mach number except at the sonic dip point with

a large drop. However, it can be also seen from those plots that the amplitude of the second

mode decreases with the increased Mach number.

The ratio of the maximum amplitude of the first mode(bending mode) to the second

mode versus Mach numbers at neutral vibration is shown in Fig. 6.10, which almost has

a shape of the reversed flutter boundary shown in Fig. 6.4. It is clear that the weight of

the torsional mode(second mode) contributing to the flutter of the wing decreases sharply

at transonic and supersonic regime. At the sonic dip Mach number of 0.96, even though

the first mode amplitude has a large drop, the amplitude of the second mode drops even

more. It gives the ratio a sonic rise. The contribution of the bending mode to structural

flutter increases abruptly at transonic Mach number 0.96. It appears that the transonic dip

is related to the anticlimax of the second mode in transonic regime.

The lift and drag coefficients neutral vibration across the sonic dip at M=0.901, M=0.96

and M=1.072 are shown in Fig. 6.11. At the flutter boundary, theCl of all free stream flow

shows limited cycle oscillation due to the periodic vibration of wing. The average of Cl
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Figure 6.10: The amplitude ratio of the first mode to the second mode at neutral vibration
flutter boundary

is about zero. Compared to the average amplitudes of Cl , the average amplitudes of Cd

increase from subsonic to supersonic due to the wave drag. Particularly, there is an abrupt

increase of the amplitude of Cd at transonic condition. The variation of Cd at M = 0.901

is LCO and the average amplitude is about 0.0104. The Cd at transonic and supersonic

flow are increased to 0.0116 at M = 0.96 and 0.0145 at M = 1.072. The pitching moment

coefficients(Cm) during the wing neutral vibration are shown in Fig.6.12. The moment is

calculated around z axis, which is in the direction of the wing span. The left plot is the time
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history of Cm and the right plot is the maximum amplitude of Cm versus of Mach numbers.

There is also a dip for Cm at transonic condition as shown in Fig.6.12. Since the pitching

moment is the primary cause of torsional vibration, the dip ofCm at sonic point is consistent

with the anticlimax of the torsional mode.

Fig. 6.13 shows the modal force defined as
φ̃∗T
j
m∗
j
·F∗ ·Vf 2 · b

2
s L
V̄ ·m̄ and modal displacement

for M=0.901, M=0.96 and M=1.072. For all the three Mach numbers, all the modal forces

and displacements have reversed phase, which are also the case for the subsonic Mach

numbers(not shown). This means that the reversed phase is not the cause for sonic dip. The

phase of the first modal force is lag half period of that of the first modal displacement at all

free stream conditions. And there are no phase lag between the second modal force and the

second modal displacement.
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Figure 6.11: Comparison of predicted lift(Cl) and drag(Cd) coefficients during neutral vi-
bration

Fig. 6.14 illustrates the wing tip physical displacement during half a period at the

neutral vibration across the sonic dip at M=0.901, M=0.96 and M=1.072.The amplitude

of the trailing edge is larger than that of the leading edge, which indicates that both the

pitching(torsion) and plunging(bending) are associated with the wing flutter. The pitching

makes the wing experience a variation of angle of attack(AOA) with time.

The instantaneous isentropic Mach number(Mis) contours on the pressure and suction
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Figure 6.13: Comparison of modal force and modal displacement during neutral vibration
at different Mach numbers

surface at 4 different freestream Mach numbers at three instants during half a period are

shown in Fig. 6.15 and Fig. 6.16. Mis reflects both the local static pressure and the flow

speed assuming it is an inviscid flow. At subsonic freestream Mach number of 0.499, the

Mis does not have large variation on the wing surface. At M=0.96, Mis contours on the

wing surface show a shock wave near the trailing edge. The shock strength is stronger near

the wing tip and is mitigated toward the root. The peak isentropic Mach number is high in

the inner span and outer span and is reduced in the span from 50% to 70%. The strength

of shock wave on the wing surface varies during the vibration, but the shock patterns are

not changed much. At supersonic conditions, M=1.072 and M=1.141, the shock strength
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becomes stronger near the trailing edge, which may be responsible for the torsion mode

amplitude depletion in the transonic and supersonic regime shown in Fig. 6.10.

Fig. 6.17, Fig. 6.18 and Fig. 6.19 are the surface isentropic Mach number distributions

at near root, mid-span and near tip at three different free stream conditions. At the sonic dip

Mach number 0.96, the smaller pitching oscillation than at Mach number 0.901 creates less

lift shown as the Mach number deviation on the suction surface and pressure surface. Fig.

6.19 shows Mis profiles at different span locations and time instants during the supersonic

flutter. The unsteady shock waves near the trailing edge of the wing is well resolved by

present method. It can be seen that the maximum lift coefficient is generated in the mid-

span and the lift coefficient is reduced toward the inner span and tip. The same phenomenon

is observed for the other two Mach numbers. It appears that the structural deformations

affects the location and strength of the part-chord shock to a significant degree, which in

turn results in a shift in the aeroelastic stability of the wing. The shocks is thus capable of

turning bending-torsion flutter instability into mostly bending flutter after the sonic dip.

Fig. 6.21, Fig. 6.21 and Fig. 6.21 show the Mach number contours during neutral

vibration at three time instants and three different span locations three different free stream

conditions. At M=0.901, the Mach number variation is stable during vibration and no shock

waves are observed. At M=0.96, shock oscillation can be seen in this figure. The shock

oscillation near tip span is more stronger than that near wing root. And the oscillation may

become discontinuous. As the wing deforms, the Tijdeman type B shock oscillation is seen

at the mid span. This kind of shock oscillation may suppress the energy flow from the

fluid to structure [3]. At M=1.072, the shock wave patterns are quite different from that in

transonic condition. And shock wave become more oblique and shock oscillation become
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stronger. There are is small expansion wave at 75% span near the trailing edge. At the

flutter boundary including at the sonic dip, no flow separation due to shock/boundary layer

interaction is observed.

6.3 Conclusion

In this chapter, DDES of a 3D transonic wing flutter is conducted with free stream Mach

number varied from subsonic to supersonic. Unsteady 3D compressible Navier-Stokes

equations are solved with a system of 5 decoupled structure modal equations in a fully

coupledmanner. The low diffusion E-CUSP schemewith a 5th orderWENO reconstruction

for the inviscid flux and 2nd order central differencing for the viscous terms are used to

accurately capture the shock wave/turbulent boundary layer interaction of the vibrating

wing. The radial basis function is employed to interpolate the mode shapes from the coarse

mesh to refined mesh.

The predicted flutter boundary at different free streamMach number including the sonic

dip achieves very good agreement with experiment. In particular, the predicted flutter

boundaries at the two supersonic conditions match the experiment accurately.

The weight of the torsional mode that contributes to the flutter of the wing decreases at

transonic and supersonic regime. The contribution of the bending mode to structural flutter

increases abruptly at transonic Mach number 0.96 at which the sonic dip occurs. It appears

that the transonic dip is related to the anticlimax of the second mode in transonic regime.

The FSI simulation gives the following observations at the sonic dip condition. The shock

strength is enhanced more near the trailing edge at near sonic Mach number. The shock
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location and motion decrease the pitching moment of the wing, which drops sharply at

the sonic dip Mach number, The decreased pitching moment induces lower torsional mode

vibration. It creates an anticlimax of the amplitude ratio of the first mode to second mode

at the sonic dip.
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Figure 6.14: Wing fluttering at M = 0.901, M = 0.960 and M = 1.072 during neutral
vibration

Figure 6.15: Instantaneous isentropic Mach number contours on suction surface. Left:
M = 0.901; Right: M = 0.96

Figure 6.16: Instantaneous isentropic Mach number contours on suction surface. Left:
M = 1.072; Right:M = 1.141
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Figure 6.17: Isentropic Mach number profile for M = 0.901
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Figure 6.18: Isentropic Mach number profile for M = 0.960
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Figure 6.19: Isentropic Mach number profile for M = 1.072



120

T1=0.1535 s

T2=0.1697 s

T3=0.2005 s

Figure 6.20: Mach number contours for M = 0.901
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Figure 6.21: Mach number contours for M = 0.96
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Figure 6.22: Mach number contours for M = 1.072



Chapter 7

Supersonic Panel Aeroelasticity

Supersonic panel flutter is a self-excited aeroelastic instability which typically has high am-

plitude and may cause fatigue damage. Study of supersonic panel flutter is very important

for supersonic/hypersonic vehicle design. However, high fidelity numerical simulation of

supersonic panel flutter is very challenging due to the complex shock-turbulent boundary

layer interaction(STBLI). For the structure, the skin panel temperature could be sufficiently

high to cause large nonlinear deflection.

The purpose of this chapter is to simulate supersonic fluid-structural interaction of a flat

panel using Delayed Detached Eddy Simulation with high order shock capturing scheme.

As the first step, the motion of the panel is treated using linear modal approach. The

dynamic motion of the panel is decoupled with the first 5 modes and is solved with Navier-

Stokes equations in a fully coupled manner

123
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7.1 Computational Model

The configuration simulated is tested at AFRL Aerospace Systems Directorate large-scale

RC-19 supersonic combustion research cell [114], as shown in Fig. 7.1. The position of

shock generator is carefully controlled so that the oblique shock hits the vibrating panel

on the top side of the test section. The detailed geometry parameters can be found in the

chapter of Gogulapati et al [56]. The compliant panel has dimensions L = 254 mm, S= 127

mm, and h = 0.635 mm. The wedge angle of the shock generator is 8◦. It should be noted

that the cross section of the shock generator is not a isosceles triangle.

The computational mesh for the shock generator model is shown in Fig. 7.2. A mesh

topology that aligns with shock angle is created to capture the oblique shock wave and its

reflection on the panel. The incline angle of mesh is determined by shock angle based on

the wedge angle and the incoming Mach number. For comparison, a mesh distributed in

the streamwise direction normal to the axis is also shown in Fig. 7.2. The total number of

grid points is 6939297 with 417 points in streamwise direction, 129 points in the transverse

direction and 129 points in the spanwise direction. The mesh is clustered near the wall

to resolve the turbulent boundary layer. Total 264 CPUs are used for the simulation with

parallel computing.

The inlet boundary conditions [56] for the computational domain is total pressure p0 =

345kPa, total temperature T0 = 290K, and M=2.0. All other variables are fixed based on

these conditions for supersonic inlet flow, zero gradient BC for the outlet, no slip and

isothermal BC for top and bottom wall. The slip BCs for side walls are used as shown

in Fig. 7.3 to save CPU cost to avoid resolving side wall boundary layers, which are

considered as having secondary effect on the panel aeroelasticity caused by STBLI. In the
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M>1

Boundary layer

Shock generator

Panel

Oblique shock

Reflected shock

Figure 7.1: Computational configuration of shock wave turbulent boundary layer interac-
tion

Figure 7.2: Different computational mesh

experiment, a pressure ports was added to the top section of the tunnel wall downstream of

the panel in order to prevent panel failure during tunnel start-up. This study uses the static

pressure right downstream of the panel to mimic the tunnel test during FSI simulation.

The non-dimensional physical time step used in the simulation is 0.05. The CFL num-

ber used for the pseudo time step is 1. Typically, it takes 30 iterations to reduce the residual

by three orders of magnitude within each physical time step. It takes one week wall clock

time to run 0.1s physical time with 264 CPUs using parallel computing. Since it is a fully
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Figure 7.3: Boundary condition of the domain

coupled fluid-structural interaction simulation, the flow and structure response are captured

by the solver itself with no parameter adjustment.

7.2 Results and Discussion

An initial investigation of the flow is undertaken aiming to identify the effect of length of

inlet duct and the side walls and assess the capability of DDES computations for this flow

case. A steady state RANS simulation was firstly conducted to examine if the shock waves

positions are captured correctly. With a 8◦ wedge, shock angle is about 39◦ at free stream

M=2.0. To achieve the correct boundary layer thickness that creates a shock angle of 39◦,

the inlet length is iterated until the shock impingement position matches the one measured

in the experiment. Fig. 7.4 shows the Mach number contour from the final computational

domain that generates satisfactory shock angle and impingement position.

The effect of the incline mesh topology is evaluated by comparing with a vertical mesh.

Fig. 7.5 shows the Mach contours of the vertical mesh. The shock angle of the first oblique
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shock agree very well with that captured by the inclined mesh as shown in Fig. 7.4. So

is the shock reflection. However, the triple point phenomenon in vertical mesh is captured

more clearly than that in the inclined mesh model. The inclined mesh shows overall higher

resolution of the front shock and its reflection than that in the vertical mesh model. Because

it is more convenient to implement the FSI simulation with a vertical mesh, the unsteady

and FSI simulation employ the vertical mesh in this study. Mesh refinement study is con-

ducted by using a total 63 million grid points in the refined mesh. Even though the shock

wave and expansion wave of refined mesh are captured with higher resolution as show in

the right plot of Fig. 7.5, the magnitude of the pressures are very similar between the coarse

and refined mesh. Due to high CPU cost of the refined mesh, the panel FSI simulation uses

the coarse mesh.

Figure 7.4: Mach number contours of the inclined mesh

The first five mode shapes of the panel are obtained by using ABAQUS software and

are shown in Fig. 7.6. The natural frequencies of the first 5 modes are f1=236 Hz, f2=306

Hz, f3=433 Hz, f4=612 Hz, f5=618 Hz. The computed results are in excellent agreement

with that from Gogulapati [56].
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Figure 7.5: Mach number contours of the vertical mesh, coarse mesh(left), refined
mesh(right)

Fig. 7.7 shows modal displacement of the first five modes of the panel. A dynamically

stable vibration is achieved after the physical time of about 0.6s. The vibration is similar to

a limited cycle oscillation as shown in Fig. 7.8. The first mode has the largest contribution

to the physical displacement amplitude among the first five modes. The contributions of

the second and the third modes are almost the same and are substantially smaller than that

of the first mode as shown in Fig. 7.7. The contributions of the fourth and fifth mode are

almost negligible compared to that of the first mode.

Figure 7.6: The first 5 mode shapes of the steel panel
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Figure 7.7: Time history of modal displacement.

Fig. 7.8 illustrates physical displacements in center-line of the panel. The largest dis-

placement occurs near the center point of the panel instead of the shock impingement point.

The corresponding spectrum analysis of physical displacement are shown in Fig. 7.9. The

maximum predicted mean displacement during the vibration is about 0.19 mm. The pre-

dicted displacement is close to that measured in the experiment [114], which is 0.089 mm.

In the simulation of Gogulapati, et al. [56], the computed mean displacements for the un-

heated cases is 0.886 mm, which is substantially more over predicted than the present

results. The dominant frequency predicted by the present FSI simulation is the 236 Hz,

which is very close to the measured frequency and is the same as the natural frequency of

the first mode.

Fig. 7.10 is Mach contours at three spanwise locations. Since the slip boundary condi-

tions are used on the side walls to reduce CPU cost, the Mach number contours are similar

along the span. Fig. 7.11 displays pressure contours at three spanwise locations. Fig. 7.12

shows pressure contours at three horizontal surfaces, bottom wall, middle plane and up-

per wall. It is clearly seen that there are high pressure jumps at shock generator location,
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mid-channel shock and its reflections impingement locations. The time history of pressure

along the center line of the panel is shown in Fig. 7.13. It is seen that there is a large

pressure fluctuation during the panel vibration.

7.3 Conclusions

In this chapter, delayed detached eddy simulation is performed to simulate a supersonic

panel vibration at Mach 2.0. Unsteady 3D compressible Navier-Stokes equations are solved

with a system of 5 decoupled structure modal equations in a fully coupled manner. The low

diffusion E-CUSP scheme with a 5th order WENO reconstruction for the inviscid flux and

a set of 2nd order central differencing for the viscous terms are used to accurately capture

the shock wave/turbulent boundary layer interaction of the vibrating panel.

The shock waves and their reflection interacting with turbulent boundary layer in the

tunnel are well captured by the DDES. The panel vibration induced by the shock boundary

layer interaction is well resolved. The dominant panel response agrees with the experiment

in terms of the mean panel displacement and frequency. Even though the linear model

structure model performs very well in this simulation, the next step would be to incorporate

nonlinear finite element model to further improve the accuracy. It takes one week wall

clock time to run 0.1s physical time with 264 CPUs using parallel computing. Since it is

a fully coupled fluid-structural interaction simulation, the flow and structure responses are

captured by the solver itself with no parameter adjustment.
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Figure 7.10: Mach contour showing the shock wave during panel vibration.

Figure 7.11: Pressure contour in spanwise sections.

Figure 7.12: Pressure contour in horizontal sections.
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Chapter 8

Stall Inception of a High Speed
Compressor Stage

High fidelity prediction of turbulent flows is very important for accurate simulation of

rotating stall characteristics with three-dimensional vortical flows, nonlinear shock wave-

boundary layer interaction, and different time scale of disturbance cells in high speed axial

compressor. These features play important roles in the formation of stall cells characterized

by propagating speed and number of cells in the annulus. Accurate prediction of the number

of cells and their speeds is important since their product will give the frequency of stall cells

passing each blade. If such a frequency is near a natural frequency of the blade, resonance

may occur and result in mechanical failures of the blade.

The objectives of this chapter are to use DDES of turbulence modeling method to sim-

ulate the stall inception of NASA Stage 35, and to reveal the rotating stall mechanism for

the high speed axial compressor involving strong shocks with the low diffusion shock

capturing scheme. For comparison, URANS turbulence modeling method was also adopted

to simulate the rotating stall.
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8.1 Mesh and Boundary Condition

8.1.1 Computational Grid

A transonic axial compressor, NASA stage 35 consisting of 36 rotor blades and 46 stator

blades [115], is simulated to investigate the stall inception mechanism. The total pressure

ratio of NASA stage 35 at design speed of 17189 rpm is 1.82. The full annulus of Stage 35

geometry and mesh are shown in Fig.8.1. The mesh size and distribution is outlined here

for completeness. An O-mesh topology around blades with H-mesh for stage inlet/outlet

duct region are used. For the rotor and stator, a grid size of 121×69×45 in the direction

around the blade, blade to blade, and span respectively is used. The rotor tip clearance is

modeled using a fully gridded O-mesh with mesh size of 121×15×11 as shown in bottom

plot in Fig. 8.1. Within the tip clearance, 11 grid points are placed radially. This mesh is

referred as the baseline mesh or main mesh with the total mesh points of about 200,000.

The tip gap is shown to have a significant effect on overall performance of axial com-

pressors [116]. The fully gridded tip mesh generation technique adopted in this study

is shown to better predict the tip clearance flow than the pinched tip or simplified tip

model [117]. In the model of the fully gridded tip, about 4 to 10 points in the tip clear-

ance are generally considered as adequate to predict the primary effects of the leakage flow

in axial compressor [1,86,116–118]. A non-gridded tip model is used by Chen et al [85]to

investigate the pre-stall behavior of NASA Stage 35. Their results indicated that the incep-

tion type of the rotating stall can be captured without fully gridded tip model. However, it

is not possible to determine the precise impact of the tip clearance modeling on stall
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inception due to the lack of detailed flow measurements in the tip clearance of NASA

Stage 35 during rotating stall.

The effect of grid size on solution accuracy for Rotor 37 using H-O-H grids with O-

grid tip clearance region by McNulty [117] shows remarkably similar predictions using

three grid size approximately with 200,000, 350,000 and 400,000 points. Similar results

are obtained for the mesh refinement study using the rotor-alone single passage in their

study. Their mesh size is similar or coarser than what is used in the present study. Im et

al. [1] uses a NASA Rotor 67 full annulus mesh with about 7 million grid points to capture

the stall cell rotating at about 48% of rotational speed. The mesh size and distribution of

a single blade used by Im et al. [1] is also similar to what are used in this thesis. The

steady state mesh refinement study was conducted in [87]. The mesh is mainly refined

around the blade, which has the dimension of 201×77×51. The results indicate that the

solution is converged based on the chosen mesh size. The excellent agreement between the

predicted radial profiles of NASA Stage 35 compared with the experiment also evidences

that the mesh is sufficiently fine to resolve the wakes [87]. The low diffusion E-CUSP

scheme employed in the thesis also contributes to minimize the numerical diffusion and

hence mesh size

Considering a disturbance with its wavelength on the order of the circumference, it

is desirable to locate the inlet and outlet boundary of the computational domain far away

from the rotor blade. In this study the inlet plane are located about 8 axial tip chord length

upstream of the rotor and about 6 axial tip chord length downstream of the stator. Total

mesh points of the full annulus are about 16 million with 482 blocks.
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Figure 8.1: Full annulus mesh of NASA stage 35

Boundary Condition

For unsteady rotor-stator interaction simulation, the rotor mesh will rotate with the rotor

blades and the stator mesh will be stationary. Solving the Navier-Stokes equations requires
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transferring the fluxes between these two meshes. In [119], a conservative sliding BC is

developed by making the meshes on both side of the sliding boundary one-to-one con-

nected. Even though the conservative BC is mathematically more rigorous, it is not always

convenient to make a multi-block mesh one-to-one connected. For engineering applica-

tions, independent mesh for rotor and stator is desirable for efficient setup of a simulation.

This paper thus adopts an interpolation sliding BC [87] with high accuracy to remove the

requirement that the rotor and stator mesh needs to be one-to-one connected.

At the inlet, the radial distributions of total pressure, total temperature, swirl angle and

pitch angle are specified and the velocity is extrapolated from the computational domain

in order to determine the rest of the variables. In this paper, no inlet perturbations are

used to trigger the stall inception in order to keep the same operation condition as that

in [80,85]. On the blade surface a non-slip boundary condition is applied, while an efficient

wall function BC [1] is used on the hub/casing surface where y+ is greater than 11 to avoid

an excessive fine mesh in the end-wall boundary layer. At the stator outlet, a static pressure

profile is specified in the spanwise direction. The velocity components are extrapolated

from the computational domain and an isentropic relation is used to determine density.

The hub/casing wall static pressure for the inviscid momentum equation is determined by

solving the radial equilibrium equation, whereas the static pressure gradient across the wall

boundary is set to zero for the blade wall surface. An adiabatic condition is used to impose

zero heat flux through the wall.
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8.1.2 Interpolation Rotor/Stator Sliding BC

For unsteady rotor-stator interaction simulation, the rotor mesh will rotate with the rotor

blades and the stator mesh will be stationary. Solving the Navier-Stokes equations requires

transferring the fluxes between these two meshes. In [119], a conservative sliding BC is de-

veloped by making the meshes on both side of the sliding boundary one-to-one connected.

Even though the conservative BC is mathematically more rigorous, it is not convenient to

make the mesh one-to-one connected. For engineering applications, independent mesh for

rotor and stator is desirable for efficient setup of a simulation. This paper thus adopts an

interpolation sliding BC with high accuracy to remove the requirement that the rotor and

stator mesh needs to be one-to-one connected.

The working mechanism of present interpolation rotor/stator sliding BC is sketched

in Fig. 8.2, where S1, S2, S3, S4 and R1, R2, R3 are the arbitrary computational mesh

cells of the stator and rotor in the circumferential direction on the two sides of the sliding

interface. The current interpolation sliding boundary condition is based on the same grid

radial distribution of the mesh on both side of the sliding boundary.

To interpolate the conservative variable vector Q, the circumferential mesh angle is first

obtained at each mesh cell center, e.g. the angle of a stator cell s1, θs1 can be defined as

tan−1(z/y)s1. Then, two adjacent mesh angles in the opposite interface corresponding to

current mesh cell are found for linear interpolation, e.g. Q at R3 is interpolated in terms

of (θR3−θS2) and (θS3−θS2) as given in Eq. (8.1). Note that a rotation rule based on the

geometric periodicity is used to interpolate Q in the non-overlap region, e.g. QS1 is rotated
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by the periodic sector angle (ϕ) to interpolate QR1 vice versa for QR1.

QR3 =
θR3−θs2
θs3−θs2

(Qs3−Qs2)+Qs2 (8.1)

Since the frame of reference taken in this study is a fixed frame for the stationary blades

and a moving relative frame for the rotor, the following exchange relations between the

fixed and moving relative frame are used.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu

ρvr

ρ(vθ + rRo)

ρ(e+ cθ rRo)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fixed

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu

ρvr

ρvθ

ρe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Moving

(8.2)
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8.2 Results of Rotating Stall Simulation

8.2.1 Stage Performance Prediction and Validation

Fig.8.3 shows the predicted speedline for NASA Stage 35 using steady state single blade

passage with mixing plane boundary condition on the rotor and stator interface. A refined

mesh of total 550,750 grid points and a baseline mesh (main mesh) of 449,790 grid points

per blade passage are used for the mesh refinement study using the mixing plane [119].

The speedline predicted by the two meshes shows good agreement. Therefore, the baseline

mesh is used to construct the full annulus mesh in Fig.8.1. The simulation is conducted

at 4004 test condition [115] since the measured radial profiles for CFD comparison are

available. The mass flows at choke condition predicted by both unsteady rotor/stator inter-

action and steady mixing plane are about 20.82 kg/s, which is about 0.62% lower than the

measured choke flow of 20.95 kg/s [115].

The circumferential mass averaged total pressure ratio, total temperature ratio, adiabatic

efficiency and absolute flow angle at stage outlet are compared with the measurement at

4004 point [115] in Fig.8.4. Overall good agreement with the experiment is achieved by

both approaches; the mixing plane and the interpolation rotor/stator sliding BC.

Fig.8.5 shows instantaneous entropy at mid span of the compressor. The wake prop-

agates through the rotor/stator interface smoothly. Fig.8.6 compares the instantaneous

normalized mass flux ρU (left) and static pressure P (right) immediately upstream and

downstream of the sliding interface. It indicates excellent flux conservation through the

rotor/stator interface. The simulation of stall inception in the following section employs

full annulus.
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Figure 8.3: Predicted speedline of NASA stage 35

Figure 8.4: Predicted pitch averaged radial profiles at 4004 including stage total pressure
ratio, total temperature ratio, adiabatic efficiency and outlet absolute flow angle
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Figure 8.5: Instantaneous entropy contour at mid span of NASA stage 35
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8.2.2 Unsteady Calculation Convergence

The full annulus unsteady simulation begins with near stall points on the compressor char-

acteristics map obtained by the RANS simulation [120]. This approach is employed by

other researchers [83, 84, 121] for the rotating stall simulations in order to reduce comput-

ing efforts.

A physical time step of around 0.000009 sec. is used in this study. One rotor revolution

will take 1440 steps. The study by Copenhaver et al. [122] shows a time step of 0.00025 sec.

is necessary to capture shock instability in a transonic rotor. Hah et al. [78] used a time step

of 0.0000125 sec. for predicting the stall inception of a similar high speed rotor originated

by the interaction of the passage shocks and tip leakage vortices. As aforementioned, the

rotating speed of the spike type stall cell in a high-speed compressor is roughly half of the

rotor rotational frequency [79, 123], the time step size adopted in this study is significantly

smaller than those used by all other researchers and is sufficient to resolve the primary flow

features during the stall inception.

Fig. 8.7 shows the L2 norm residual and inlet mass flow rate converging history ob-

tained by the RANS at choke and DDES during rotating stall. Due the strong shock oc-

curred near the rotor leading edge, the RANS calculation began with a 1/3 of designed

rotor speed. Once the computation has converged enough (for 10000 steps the calculation

converged about 5 orders of magnitude) as shown in the left plot of Fig. 8.7, the results are

used to start full speed unsteady simulation. The step changes in residual and mass flow

rate around 10000 steps are due to the change of RPM. The unsteady simulation achieves 2

orders of magnitude residual reduced in each physical time step. The calculation becomes

numerically unstable after 3.2 rotor revolutions. The maximum residual occurred at ro-
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tor stator interface, which may be due to the high aspect ratio mesh used near the casing

surface.
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8.2.3 Stall Pressure Rise Characteristics

The predicted unsteady stage speed line is illustrated in Fig. 8.8, which starts from the

near stall point D. From point A to point D, the simulation is steady state and the results

at point D are used as initial flow field of the unsteady calculation. The results of DDES

are compared with that of URANS. It can be seen that the stall onset predicted by URANS

starts at higher back pressure than that by DDES. In the speedline of DDES, the rotating

stall inception simulation begins at point P1 with the back pressure fixed and letting the

stall inception develops by itself. The stage total pressure ratio drop is slow from point

P1 to point P2. The total pressure ratio decrease rapidly after point P2, which indicates the

onset of rotating stall. Large pressure ratio oscillation is observed between point P4 and P5.

The unsteady calculation diverged at point P6 due to numerical instability. In the results of

URANS, rotating stall simulation starts from the near stall point M1. It can be see that
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pressure drop after the near stall point is almost linear without oscillation. The URANS

modeling appears to smear the oscillation.

Fig. 9.2 shows the variations of mass flow rate during rotating stall for both DDES and

URANS. The mass flow drops linearly up to 2.0T (T is the rotating time in one rotor revo-

lution) at Point P2 where the stall inception occurs for the DDES simulation and decrease

oscillatory and rapidly after that. The deep rotating stall occurs at P4 with the stall region

growing toward inner span. In URANS, the mass flow drops slowly at the first 3T and starts

oscillating after that.
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Figure 8.8: Predicted unsteady speed line with full annulus simulation

8.2.4 Rotating Stall Onset and Propagation

Rotating stall is usually initiated from rotor tip. This is also the case for the NASA Stage

35. To capture the rotating stall inception, the numerical probes are located about 50% tip

chord length upstream and downstream at the rotor tip span. The term ’stall cell’ used in

the current study is to describe a continuous structure of disturbances.

Fig.8.10 shows the variations of instantaneous static pressure and axial velocity pre-
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Figure 8.9: Inlet mass flow rate variation during rotating stall. Left: DDES. Right: URANS

dicted by both DDES and URANS at the rotor tip upstream. In the results of DDES, small

amplitude of pressure fluctuations that is about 0.8% of the average pressure are observed

near 7.0T, which covers about full annulus of the compressor and appear to be modal dis-

turbance. Generally, the modal disturbance has a length scale of one rotor circumferential

and propagates at about 20% to 50% of rotor speed. The modal disturbance observed in

this study does not propagate, which is different from the classical modal wave. At about

7.3T, two spike disturbances with amplitude about 10.0% of the local pressure appear. The

propagation arrows shown in plots are obtained by roughly connecting the peak of pressure

in adjacent passage. The propagating speed of stall cell can be determined by the slope of

the line. The two disturbances rotate at about 42% rotor speed. Large mass flow drop and

fluctuations occur after the two stall inception cells are formed at about 7.5T as shown in

Fig. 9.2.

At about 1T after the emergence of the two spike like inception stall cells(P2), the nu-

merical simulation becomes unstable before the fully developed stall cells are captured.

However, it does not affect the investigation of stall inception mechanism that is far before
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the fully developed stall cells are formed. The trigger of stall inception is the flow insta-

bility instead of numerical instability, since the residual is less than 10−5 and 2 orders of

magnitude residual reduction is achieved as shown in Fig. 8.7. The calculation is diverged

quickly in a few pseudo time iteration within one physical time step.

For the results of URANS, the right plot in Fig. 8.10, a spike like disturbance traveling

with full rotor speed is seen at about 14.5T. The spike disturbance continues to rotate and

is transported to more blade passages with about 90% rotor speed. At about 1.5T after the

stall inception occurs, the stall cells propagation slows down to 50% of the rotor speed in

the opposite direction of the rotor rotation. The rotating stall is fully developed within 1.2

rotor revolutions. Both DDES and URANS captured spike like stall inception, which begin

with modal like disturbance. However, DDES predicts the initial pressure disturbance with

higher wave number than the URANS. In particular, the DDES captures two very distinct

spike stall inception whereas the URANS tends to have the disturbance more smeared and

organized. DDES captures two stall cells with lower propagating speed compared with

URANS, which predicted one stall cell. The URANS can predicted a fully developed

rotating stall cell that can not be obtained by using DDES due to numerical instabilities.

The time history of axial velocity(Ux) at half tip chord length upstream of the rotor are

shown in Fig.8.11. The variation of Ux is similar to that of pressure, and the difference

is that the lower of the axial velocity corresponding to the higher of pressure at the same

time. The propagating speed of the stall cell is more clear and we can roughly calculate the

propagating speed of the stall cell from this plot.

The time traces of pressure and axial velocity located at rotor stator interface are illus-

trated in Fig. 8.12 and Fig. 8.13 respectively. It can seen that the propagating behavior of
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Figure 8.10: Time traces of pressure near half tip chord length upstream of the rotor leading
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Figure 8.11: Time traces of axial velocity near half tip chord length upstream of the rotor
leading edge at the tip span. Left: DDES. Right: URANS

the stall cell is also observed at rotor downstream. Two main rotating stall cells are also ob-

served in the left plot (DDES) and one stall cell in the right plots (URANS). They indicate

the axial range of the stall cell is at least from the leading edge of the rotor to the sliding in-

terface between the rotor and the stator. Considering the results of DDES, the propagating

speed of the two stall cells are almost the the same as that observed in the rotor upstream,

but the propagating direction of the stall cells at downstream of rotor is opposite to that at
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rotor upstream in the relative frame. Furthermore, the rotating stall at the downstream of

the rotor starts about 0.1T earlier than that at the upstream, which may be due to the rotor

stator interaction. The pressure and axial velocity predicted by the URANS at downstream

of the rotor trailing edge also show one stall cell.
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Figure 8.12: Time traces of pressure near half tip chord length downstream of the rotor
trailing edge at the tip span. Left: DDES. Right: URANS
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Figure 8.13: Time traces of axial velocity near half tip chord length downstream of the
rotor trailing edge at the tip span. Left: DDES. Right: URANS

In the stall simulation of Stage 35 by Chen et al. [85], the modal disturbance is observed

at the first 2 rotor revolutions and then it transforms into spike disturbance. The modal
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disturbance in their study is also not a classical one, because the propagating speed is

100% of rotor speed. The forming process of the spike disturbance in this study has similar

pattern, but occurs more rapidly. From the modal wave to spike, the present simulation has

only 0.3 rev. However, the spike disturbances captured in this thesis are more compact,

covering about 6 blade passages. The number and size of stall cells can not be observed

in the similar plot of time trace of pressure in the results of Bright et al. [80] and Chen et

al. [85], since there are only 8 numerical probes located near the rotor leading edge. Casing

wall static pressure experimental measurements of Stage 35 by Bright et al. [80] shows the

spike(pip) inception is a disturbance standing on the modal wave. This phenomenon is not

clearly seen in the numerical results of Chen et al. [85] and Gan et al. [87].

The time history of circumferential flow variables can be also used to investigate the

stall inception characteristics. Fig. 8.14 and Fig. 8.15 show the circumferential distribu-

tions of the normalized static pressure and velocity respectively, located at 50% tip chord

upstream of rotor at different instant. For easy comparison, the results at different instant of

the 50% span are plotted at the same figure at different radial location. Readers should not

confuse them as the results at different span. For DDES, at t=7.0T(P1), the flow around the

full annulus is periodic and no disturbances are observed. The variation of static pressure

through full annuls appears to have sharp oscillations, which indicates that there exit strong

shock waves near the leading edge of the rotor. At t=7.25 T(between point P3 and P4), the

flow periodicity is lost at some parts of the annulus, and the annulus region containing large

disturbance are from 90◦ ∼ 150◦ for the first stall cell, and 280◦ ∼ 340◦ for the second stall

cell. It indicates that the sizes of the stall cell at this moment cover about 5 to 6 passages.

The local non-uniform pressure indicates the onset of the spike type rotating stall. At about
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1T after the stall inception point P2, the rotating stall reaches point P6 at 8.2T. Fig. 8.14

shows that the sharp edge shapes of pressure distribution disappear after t=7.25T in the stall

cell region due to the shock waves moving to upstream. For the URANS result, one stall

cell was captured, but the size of the stall cell is about the same as that of the DDES.
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The previous results show that the predicted propagating speed of stall cell by using

URANS method is about 90% of rotor speed, which is about two times of the DDES. The

mass flux in circumferential direction at 7.33T, as shown in Fig. 8.16 may be used to

understand the cause of the speed difference in the methods of URANS and DDES. It is

seen that the amplitude of circumferential mass flux oscillation predicted by the URANS

is about the same as the DDES at the mid span where there is no stall flow. However, the

amplitude of the mass flux oscillation at stall region predicted by the URANS at tip span

is about two times greater than that of the DDES. The large gradient of tangential mass

flux between the stalled region and unstall region may cause the stall cell propagating with

such high speed in the URANS. It appears that the propagating speed of rotating stall is

determined by the circumferential mass flux oscillation in the relative rotating frame.
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Fig. 8.17 and Fig. 8.18 illustrate entropy contours in axial cross section near the rotor

leading edge and trailing edge. Entropy stands for the degree of energy loss and high en-

tropy reflects the stalled region of the annulus. For DDES, at 7.33T(right after stall onset),
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two high entropy regions near casing appear as the indication of the stall stall inception

covering about 6 blade passage. Fig. 8.17 shows that the stall cell starts from the rotor

tip area, and grows along the circumference as well as inward. Compared with DDES, the

stalled flow region predicted by URANS is more smooth and continuous. This is because

that the RANS modeling using time average creates false isotropic structures that smears

the large flow structures. The stall cell of the URANS developed faster than that of the

DDES in both circumferential direction and inward span within the same time.

The entropy contours near the rotor trailing edge are shown in Fig. 8.18. It is observed

that the flow at the rotor trailing edge has larger blockage and more energy loss than that

at the rotor leading edge. The tip leakage vortices, flow separation on suction surface, and

trailing edge wakes all contribute to the blockage and energy loss.

Fig. 8.19 shows the entropy contour lines within the tip clearance predicted by both

DDES and URANS during the stall inception. It can be seen that the axial length scale of

the initial stall cell is about one tip chord length in both DDES and URANS. As the stall

cells develop, the flow blockages extend both upstream and downstream of the rotor.
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Figure 8.17: Entropy near rotor leading edge. Left: DDES. Right: URANS
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Figure 8.18: Entropy near trailing edge. Left: DDES. Right: URANS
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Figure 8.19: Entropy at the mid tip clearance span. Left: DDES. Right: URANS
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Flow mechanism of rotating stall

Fig. 8.20 shows the relative velocity vector and Mach number contour indicating the sonic

boundary at the tip span. The results of DDES are compared with that of URANS. The

plots are used to track the stall cell in the annulus. Considering first the results of DDES,

at 7.11T, before the onset of rotating stall, the sonic lines is attached and oblique to the

rotor leading edge. And there are no back flow observed from the rotor trailing edge. At

7.33T, the stall onset point, a large distinct passage vortex is formed in each blade passage

near the rotor tailing edge. The through flow is largely blocked by the vortex. The sonic

boundary moves upstream of the leading edge due to the flow blockage. At 8.0T, the stall

cells grows larger and the sonic line is pushed further upstream. The vortexmoves upstream

and interacts with tip leakage flow, which forms a large vortex located in the middle of the

blade passage near the rotor leading edge.

The URANS method also predicts similar large blockage at 15.56T at stall onset as

shown in the right plots of Fig. 8.20. However, the blockage is mostly formed by the

reversed flow instead of distinct passage vortex as observed in DDES. The sonic boundary

movement predicted by URANS is similar to that of DDES, but is smoother.

The instantaneous contours of static pressure predicted by both DDES and URANS at

the tip span are shown in Fig. 8.21. It can be seen that the spike stall inception region

has higher blockage that generates highly spiky and oscillatory pressure wave propagating

upstream, which destroys the circumferential periodicity. Similar phenomenon can also be

seen in the results of the URANS on the right of Fig. 8.21. However, the pressure wave

is much smoother due to being smeared bye the RANS model. As the rotor rotating, the

stall cell propagates in the opposite direction of rotor revolution in relative frame as shown
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in Fig. 8.17 and grows rapidly. The flow blockage becomes larger with time at 8.0T, the

non-periodic flow near the tip span covers most of the rotor passages. Furthermore, it is

evident that the rotating stall is convected downstream of rotor and interacts with stator,

which creates a significant blockage in the stator blades.

The vortex structures captured by DDES during rotating stall near the rotor tip span are

shown in Fig. 8.22. At 7.11T before stall inception,the tip vortex from the blade leading

edge has the streamwise trajectory going downstream in the vicinity of leading edge. The

vortex then merges with the tip leakage flow from the upstream rotating blade passage.

The vortex trajectory becomes tangential and reaches the leading edge of the downstream

rotating blade. An obliques tip leading edge vortex forms again in the next blade and the

pattern repeats in each blade. The vortex structure is circumferentially connected from one

blade to the next in the stall regime.

At 7.33T when the stall inception occurs, the vortex emanating from the blade tip lead-

ing edge rolls up to end on the casing wall with the vortex axis mostly in the radial direction

and normal to the casing wall. This radial vortex can be clearly seen in Fig. 8.20 and 8.22.

The vortex structures during stall inception are similar to those observed in [124]. The

radial vortex appears in each of the stall inception blades. With the rotating stall inception

growing, the radial vortex shedding frequency is also increased that there are two clear

strong radial vortices appearing in the same blade passage at 8.0T as shown in Fig. 8.22.

It appears that the stall inception occurs with the tip vortex changing from streamwise to

radial. Fig. 8.22 also shows that there is a weak vortex near the trailing edge that is formed

by the back flow from the upstream blade.

Fig. 8.23 shows the radial distributions of total pressure ratio predicted by DDES during
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Figure 8.20: Velocity vector of rotor tip span with Mach number contour indicating sonic
boundary. Left: DDES. Right: URANS
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Figure 8.21: Static pressure at the tip span. Left: DDES. Right: URANS
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Figure 8.22: Flow structure colored with entropy near tip span

rotating stall. There is a sudden decrease of total pressure ratio near the rotor tip span at

the onset of spike inception at 7.22T. Interestingly, the large total pressure drop in the tip
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region of the rotor disappears with the stall inception growing. Instead, the total pressure

drop is spread to the whole span. This appears to be because the blockage created by stall

inception is quickly spread to the whole span. It relieves the tip blockage, but increases the

overall blockage along the span.
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Conclusions

DDES is conducted for the first time to investigate a full compressor stage , NASA Stage

35, rotating stall inception mechanism with sliding interpolation BC between the rotor and

the stator. The details of the flow breakdown that leads to fully developed rotating stall

is well captured by the present numerical simulation. The simulation shows that the rotor

stall onset begins with modal disturbance followed rapidly by two spike disturbances. The

size of an onset stall cell covers about 5 to 6 rotor blade passages. The propagation speed

of stall cell is about 42% of rotor rotating speed. This DDES of stall inception captures two

stall cells whereas the URANS simulation only has one stall cell propagating at about 90%

rotation speed. The different propagating speed of stall cells between the URANS and the

DDES appears to be caused by the different circumferential mass flux and flow speed.

The vortex trajectory aligned in the blade pitching direction is an indicator that the stall

inception is imminent. The spike stall inception appears to be characterized as the tip vortex

rolling up and ending on the casing wall with the vortex axis mostly in the radial direction.

Similar to the conclusions in Im et al. [1], the DDES captures many small scale structures

of the stall inception, whereas the URANS tends to smear the flow structures due to the

Reynolds time average.



Chapter 9

Stall Flutter of a High Speed
Compressor Stage

Stall flutter is an aeromechanic instability that usually occurs at part-speed operation

in turbomachinery. It occurs when the energy absorbed by the blades from surrounding

fluid exceeds the dissipating energy of the material and mechanical damping. The blade

will vibrate exponentially and cause possible structure failure. Transonic stall conditions in

turbomachinery are highly unsteady, non-linear and three dimensional, which include flow

induced vibration, flow separation, shock unsteadiness, shock wave/turbulent boundary

interactions. The driving mechanism of the stall flutter in transonic turbomachinery may

vary due to separation and shock wave oscillation.

The purpose of this chapter is to simulate a transonic stall flutter in a full stage with

rotor-stator interaction and traveling waves. In this thesis, the URANS is used in most

stall flutter calculations and the DDES is also utilized at near stall condition for compar-

ison. The full annulus of NASA Stage 35 is selected to demonstrate this capability and

to avoid introducing the error due to circumferential phase lag boundary conditions. This

is an important step forward to improve the industrial aeromechanic design and analysis

accuracy.
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9.1 Mesh and Mode Shape

The same transonic axial compressor, NASA stage 35 used in the study of rotating stall in

Chapter 8 is simulated to investigate the driving mechanism of stall flutter. The same mesh

for the stall inception is also used in the calculation. The blade structure is modeled by its

first 5 natural vibration mode shapes generated by using commercial solver ABAQUS. The

design rotating speed is 17188.7 rpm. The blade is made of material Maraging200 with

a density of 8200 kg/m3 approximately. Fig. 9.1 shows the 1st to 5th mode shapes. The

blades are modeled as fixed at the rigid body rotor and the centrifugal force is considered

in mode extrapolation. The mass ratio between the blade and air is about 7528. It is not

clear if Stage 35 actually had flutter since the material appears to be very rigid with high

density ratio to air. This rotor is selected because the geometry data is available in the

public domain.

Figure 9.1: Mode shape of Rotor 35
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9.2 Stall Flutter Simulation

The simulations start with the unsteady calculation of the flow field of the stationary rigid

blades. The FSI simulations start when the unsteady flow field around the blades is fully

developed. Because the stall flutter usually occurs at near stall point, the back pressures are

adjusted along the speedline as shown in Fig. 8.3 for point B, C, D and E to capture the

flutter. As a small imposed initial perturbation, all the five modes of the blade structural

motion are given the same normalized initial velocity, which is 1.0e-6. Then the blades are

allowed to deflect in response to the dynamic force load. Within each physical time step,

the solution is usually converged with 20-30 iterations with the residual reduced by 2-3

order magnitude. Fig. 9.2 shows the variations of mass flow rate during rotating stall with

FSI simulation. It can be seen that the mass flow drops slowly up to 1.0 revs and decreases

quickly after point E. The mass flow rate is dynamically stable for FSI simulation from

point A to E.

The time history of the first 5 modal displacements with a backward traveling wave of

ND=1 at condition point C in the map (Fig. 8.3)is shown in Fig. 9.3. In this result, zero

structural damping ratio is used in the calculation. The response of the first mode increases

gradually, while the other modes decay with time. The first mode is dominant since the

amplitude of the first mode is about 4 times higher than that of the second mode. The

response of the first mode at working conditions of point B, C, D and E are compared in

Fig. 9.4. It can be seen that the amplitudes of the first mode at all conditions diverged

gradually, which indicates that the predicted response is flutter in the first mode without

structural damping. As the working point shifting from near peak condition (point D) to

near stall condition (point E), the vibration amplitude continue to increase. The largest
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blade vibration occur at point E and the response become diverging due to the non-periodic

rotating stall flow acting on the blade surfaces.

Turbomachinery blade flutter usually occurs with a traveling wave in which the blades

vibrate at the same frequency but with a constant phase difference termed as inter blade

phase angle. The numbers of nodal diameter are unknown before an engine is made and

tested. One of the preliminary jobs of aeroelastic design of compressors is to find the least

stable nodal diameter. The modal displacements with different inter blade phase angle

in backward traveling mode is shown in Fig. 9.5. The results in the plot are used zero

structural damping coefficient at point C. It is shown that the amplitude of the 1st mode

decreases as the number of ND is increased. The phase angle of ND=1 is least stable

condition. Fig. 9.6 shows the generalized displacement for all the blades. It can be seen

that the traveling waves are clearly captured. For ND=1, one blade vibration cycle of the

rotor full annulus is clearly captured where two cycles appear for ND=2.

The structural damping is one of the important parameters in the vibrating behavior of

the rotor blades, which is difficult to obtain from experiment. The structural damping value

of the blades in NASA Stage 35 is not available. All the structural damping coefficients

used in the calculation are set with empirical values. The modal displacement of the 1st

mode with different damping coefficient are shown in Fig. 9.7. It can seen that the vibration

amplitude decreases as the structural damping is increased. Fig. 9.8 shows the response of

the 1st mode with damping value of 0.003 at different working conditions. It is observed

that the vibration damped quickly with this higher damping coefficient at all points except

at point E. The response of point E damped in the first three rotor revolutions and diverged

after that. The Stage 35 compressor rotating stall inception occurs at near point E. It appears
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that the stall flutter in Stage 35 is due to the rotating stall.

The DDES method is more capable of predicting flow separation than URANS. Thus

DDES is also used for FSI calculation at rotating stall point E. The predicted modal dis-

placements of the 1st mode by using both URANS and DDES are shown in Fig. 9.9. It

can be seen that both methods predicted damped responses in the first 2 rotor revolutions.

The response predicted by URANS begin to diverge after 3.5 rotor revolutions. And the

amplitude of the 1st mode predicted by DDES begin to diverged after 2.5 rotor revolu-

tions. The amplitude of vibration predicted by DDES is higher than that of URANS. The

DDES method predict more energetic flow structure than the URANS method. The onset

of rotating stall in the DDES starts earlier than that of URANS.
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Figure 9.2: Mass variation during blade vibration
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Figure 9.3: Modal displacements with ND=1 and zero structural damping at point C
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9.3 Stall Flutter Mechanism

9.3.1 Without Damping

Simulations are conducted at stable condition point C with 2 nodal diameters and zero

structural damping. Hence, all the damping in the structural response is from the aerody-

namic damping. The blade vibration is unstable with these input parameters as shown in

Fig. 9.5.

Fig. 9.10 shows the modal force and modal displacement during flutter. The modal

force and modal displacement is about in phase, which indicates an unstable condition.

Fig. 9.11 shows the time histories of angular displacement and pressure at leading edge

near tip span during flutter. The unsteady pressure fluctuation is also about in phase with

that of the angular displacement.

Fig. 9.12 shows the spectrum of angular displacement at the leading edge of rotor tip.

The blade vibration is mainly at the first mode. The higher modes have the amplitudes

at least three times smaller than that of the first mode. This is consistent with the modal

displacement shown in Fig. 9.3. Fig. 9.13 shows the spectrum of static pressure at the

leading edge of rotor tip. The dominant frequency is near the first natural frequency. Fig.

9.14 illustrates the pressure contours at point C during fluid structure interaction. The

flow near rotor tip is periodic and dynamically stable. Shock waves are the dominant flow

structure in the blade passages.
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9.3.2 With Damping

The blade vibration is damped with the structural damping coefficient of 0.003 at all points

on the compressor characteristics map, except at the near stall point E. Fig. 9.15 shows the

time history of mass flow rate at point E by using URANS and DDES. It can be seen that

the predicted mass flow rate drops sharply after about 2 or 3 rotor revolutions with both

URANS and DDES, which indicates the onset of rotating stall. The stall inception pre-

dicted by DDES starts about 2 rotor revolution earlier than that of URANS. The mass flow

fluctuation amplitude of the DDES appears to be higher than that predicted by URANS.

This maybe the reason that the predicted amplitude of blade vibration by DDES is higher

than that of URANS as shown in Fig. 9.9.

Rotating stall in Stage 35 starts from rotor tip as described in Chapter. 8, the onset of

rotating stall may be sensitive to the flow perturbation in the near tip region. The interaction

of tip leakage flow with rotor tip shift the onset of stall with lower back pressure. Fig. 9.16

shows the variations of instantaneous static pressure at half rotor tip chord length upstream

of the rotor at point E by using URANS and DDES. With the blade vibration, rotating

stall inception appears to be triggered at about the same time for the both URANS and

DDES. The stall inception of Stage 35 simulated using rigid blades in Chapter. 8 shows

that the URANS predicts the stall inception with substantially more rotor revolutions than

the DDES. The results of Fig. 9.16 showing that both the DDES and URANS predict the

stall inception at about the same time indicates that the blade vibration does enhance the

stall inception.

Fig. 9.17 illustrates the modal force and modal displacement of the first mode predicted

by URANS and DDES during stall flutter. It is shown in the figure that modal force and
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modal displacement decay before the stall inception occurs at rotor revolutions of 3.2 for

the DDES and 1.8 for the URANS as shown in Fig. 9.16. The modal force and displace-

ment predicted both by DDES and URANS diverge when the rotating stall occurs. Their

oscillations are in phase and enhance the flutter.

Fig. 9.18 shows the time histories of angular displacement and pressure near the leading

edge of rotor tip during stall flutter. The pressure oscillation sharply increase while the

displacement is amplified when the stall occurs. The variation of both parameters is similar

to the modal force and displacement shown in Fig. 9.18 since the 1st mode is the dominant

mode of the rotor blades flutter.

Fig. 9.19 shows the spectrum of static pressure at the leading edge of rotor tip, in

which the temporal samples are recorded from point E. It can be seen that both URANS

and DDES capture similar unsteady flow behavior. For example, the peak amplitudes are at

low frequency of around 200Hz, and considerable fluctuation near the 1st natural frequency

of 1227 Hz are captured. However, DDES predicts two dominant frequencies near 1st

natural frequency, and URANS only predicts one. Fig. 9.20 shows the spectrum of angular

displacement at the leading edge of rotor tip at point E. Both the URANS and DDES predict

one dominant frequency near the 1st natural frequency.

Fig. 9.21 illustrates the pressure contours after 1 rotor revolution at the middle of tip

clearance span. The flow predicted by URANS is stable as shown in Fig. 9.15, but the

DDES results already loss the periodicity as indicated by Fig. 9.15 that the DDES mass

flow already has a significant drop at 1 rev. At 4 rotor revs, both the URANS and DDES

predict the flows with deep stall as shown in Fig. 9.22. The flow blockage predicted by

DDES is larger than the URANS in both circumferential and streawise directions as shown
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by Fig. 9.23 of the entropy contours at cross section near rotor leading edge at 4 revs. The

interaction between rotating stall cells and blades predicted by DDES is stronger than that

in URANS, which lead to higher amplitude of vibration as shown in Fig. 9.20. The large

flow oscillation due to the flow blockage predicted both DDES and URANS makes the

blades absorb more energy from the flow. It enhances the rotor blades flutter.

Conclusions

The fully coupled FSI simulation is conducted using DDES and URANS with full annulus

and a full compressor stage, NASA Stage 35. For all the operating points, if no mechanical

damping is used, the amplitudes of the blade vibration increase gradually and flutter occurs.

With 0.001 structural damping, the blades are damped before the stalling point E. However,

the blade vibration response diverges at stalling point E due to the rotating stall.
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Figure 9.21: Pressure contours at the tip span before rotating stall
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Figure 9.22: Pressure contours at the tip span rotating rotating stall

Figure 9.23: Entropy contours during rotating stall



Chapter 10

Investigation of The Mechanism of
Non-Synchronous Vibration

The non-synchronous vibration (NSV) is a new phenomenon discovered recently and is a

type of rotor blade vibration asynchronous to the rotor rotating speed. It is observed that the

NSV occurs mostly in the compressor/fan rotor tip region when the tip clearance is large.

NSV may generate high cycle fatigue for the rotor blades and is also known to generate a

whistling tone noise. Understanding the NSV mechanism is crucial to guide the design to

mitigate or avoid the HCF and noise caused by NSV.

However, the driving mechanism of NSV is not fully understood yet. Currently, there

are two hypotheses explaining NSV: one attributes NSV to vortex shedding and rotating

instability, the other attributes it to the resonance of the tip clearance back flow and the

acoustic wave feedback. The aim for the present work is to study the mechanism of com-

pressor/fan Non-Synchronous Vibration (NSV) using high fidelity simulation with a fully

coupled fluid-structural interaction model.
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10.1 Numerical Methods

The numerical simulation of NSV is conducted by using a fully coupled fluid/structure in-

teraction. Time accurate compressible 3D Navier-Stokes equations with Spalart-Allmaras

turbulence model are solved with a system of 5 decoupled structural modal equations in a

fully coupled manner. The 3rd order WENO scheme for the inviscid flux and 2nd order

central difference for the viscous terms are used to accurately capture the interactions of

the fluid and structure.

10.1.1 The NSV Compressor

The high speed axial compressor used in this research is the same as the one studied in

[17, 22], which exhibits a NSV at the first stage rotor blades. The first 1-1/2 stage has 56

IGVs, 35 rotor blades and 70 stator blades, which provides a geometry periodicity in every

5 rotor blades. Hence, 1/7 sector of the compressor is simulated to save the computational

cost. The tested rotor tip clearance in the compressor rig is 1.1% of tip chord. In this

research, two different tip clearance models including tip1 model with clearance size of

2.4% tip chord, tip2 model with clearance size of 1.1% have been studied. Tip1 model

is used to validate the recent developed the sliding interpolation BC [87]. Tip2 model is

used to examine the lock-in phenomenon during NSV and to be consistent with the work

of Im and Zha [21]. The measured blade NSV has a response close to 1st torsional blade

natural frequency. The experiment shows a NSV frequency of 2600 Hz at around 12880

RPM and 2661 Hz as the rotor speed slightly decreases to about 12700 RPM as shown in

Fig. 10.1. Unfortunately, the unsteady blade response signal from the strain gage on the
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blade surfaces are not available.

Figure 10.1: Strain gage response of the first-stage rotor blades of the high-speed compres-
sor showing NSV(non-synchronous vibration) frequencies

10.1.2 Computational Mesh

It is very important to create high quality orthogonal mesh for a flow solver based on struc-

tural mesh in order to achieve high fidelity solutions. The 1/7th sector mesh for tip1 model

used in the simulation is shown in Fig. 10.2. The H-mesh layer used in [119] is removed

and was replaced with O-mesh at the rotor/stator interface. The sliding interpolation BC is

implemented for the flux exchange across the rotor/stator interface, which removes the re-

quirement of one-to-one matched grid point at the sliding BC interface between a rotor and

stator. The O-mesh topology is used around blade to achieve high orthogonal mesh near

the blade surface. For the IGV and stator, the mesh size is 121(around blade)×77(blade-

to-blade)×46(blade span). For the rotor, the mesh size is 201(around blade)×77(blade-to-

blade)×46(blade span). The rotor tip clearance is modeled with 11 grid points using an
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O-mesh block. The tip gap is shown to have a significant effect on overall performance

of axial compressors [21, 116]. For fully gridded tip clearance, about 4 to 10 points in

the tip clearance are generally considered as adequate to predict the primary effects of the

leakage flow in axial compressor [86, 116–118]. The total mesh size for this 1/7 sector of

1-1/2 compressor is 12,332,628. The mesh of IGV/rotor/stator is partitioned to total 168

blocks for parallel computation. The grid used in the simulation of lock-in phenomenon

is the same as that in [21], in which H-mesh layer and conservative sliding BC are used at

rotor/stator interface.

Figure 10.2: 1/7th Annulus mesh for NSV simulation
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10.1.3 Mode Shape of the 1st Stage Rotor Blade

For FSI simulation, the finite element analysis is performed firstly o extract the mode shapes

and frequencies of the blades. Since the first a few modes are usually dominant to describe

turbomachinery blade vibration characteristics [10, 88], the first five mode shapes are used

in this study and are normalized by the generalized mass(
√

φTmφ ) provided by manufac-

turer. The natural frequencies are 1065.5 Hz, 2621.0 Hz, 3591.0 Hz, 5275.4 Hz and 6226.4

Hz. The deflections of the first five modes are displayed in Fig. 10.3. The blades are

modeled as fixed at the rotor disk. Note that the NSV of the compressor in this study is

observed in the rig test close to the first torsional mode, which is the mode 2 in Fig. 10.3.

10.1.4 Boundary Conditions

The fully conservative sliding boundary condition (BC) [119] at the blade row interface is

used in order to rigorously resolve wake propagation, shocks interaction and rotating in-

stabilities. In addition, an efficient time-shifted phase-lagged BC [21] with nodal diameter

of 7 is applied at the lower/upper circumferential periodic boundaries to facilitate 1/7th

annulus simulations.

At the IGV inlet, the given radial distributions of total pressure, total temperature, swirl

angle and pitch angle are applied and velocity is extrapolated from the computational do-

main in order to determine the rest of variables. On the blade surface and casing wall a

non-slip boundary condition is applied, while on the hub surface the law of the wall is used

to avoid an excessive fine mesh in the boundary layer [1]. At the stator outlet, the static

pressure is specified in the spanwise direction. The velocity components are extrapolated

from the computational domain and an isentropic relation is used to determine the density.
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Figure 10.3: Rotor blade modal deflections

If the wall surface is rotating, the wall static pressure for the inviscid momentum equation

is determined by solving the radial equilibrium equation. If the wall surface is stationary,

the static pressure gradient across the wall boundary layer is set to zero. In addition, the

adiabatic condition is used to impose zero heat flux through the wall.

The pressure on the rotor blade surface is a very important parameter to understand the

aerodynamic excitation in the passage. A series of numerical probes are put on the blade
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surface in order to capture the main flow excitation on the blades. The distribution of those

numerical probes is the same as that in [22].

10.2 Results of Rigid Blade Simulation

10.2.1 The Speedline and NSV Location

Since NSV of axial compressors is typically observed in stable operation [16–19], unsteady

flow simulations are first conducted with rigid blades at different back pressure conditions

to find the region with dominant NSV flow excitation in the speedline. The tip clearance of

1.1% tip chord is used in this study.

Fig. 10.4 shows the predicted speedline of the 1-1/2 stage axial compressor. Note that

the time averaged speedline data are obtained with rigid blades by averaging final 2 rotor

revolutions. The back pressure is gradually increased from the point A to the near stall point

D. The point A is about maximum mass flow condition. The NSV excitation is captured

close to the near stall point D. No NSV excitations are observed at point A, B and C.

Fig. 10.5 shows time history of the rotor outlet mass flow rate . In this study the

unsteady solutions between 4.0 and 12 rotor revolutions are used for the NSV frequency

analysis since the predicted mass flow shows periodic oscillations after 4.0 revolution. The

compressor at the NSV point operates without a mass flow breakdown as observed the

experimental studies [16–19].
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10.2.2 Driving mechanism of NSV

Fig. 10.6 shows instantaneous entropy ( ΔS
R = γ

γ−1 ln
To
To∞

− ln PoPo∞
) near the rotor LE axial

plane. The flow above 80% blade span is largely disturbed due to a circumferentially trav-

eling vortex that triggers the non-engine order vibration of the compressor [69]. The NSV
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with large blade vibration amplitude is attributed to the vortex traveling in the circumfer-

ential direction between 65% to 91% of the blade span.

The LE circumferentially traveling vortex captured for this compressor roughly above

80% rotor span is illustrated in Fig. 10.7. V1, V2, V3, V4, V5 show the vortices with

the axis about normal to the blade suction surface. As indicated in [22], the tip vortex

travels from a blade LE to trailing edge and then to the LE of the next blade in a repeated

fashion. Such a vortex motion generates a pair of aerodynamic excitation for blade torsional

vibration because of two low pressure regions followed by the vortex core positions, one

near the LE and one near the trailing edge.

Figure 10.6: Entropy contour near the rotor LE axial plane

Fig. 10.8 indicates the reversal flow near the rotor tip region due to the vortices travel-

ing. A locally stalled flow appears near the rotor tip, but no rotating stall happens during

the compressor NSV. The vortex is examined at time T1, T1+Δt and T1+2Δt, where Δt is

about 0.045 Rev (rotor revolutions). Fig. 10.9 shows instantaneous movement of the vortex

V2 at t=T1, T1+Δt, T1+2Δt. It is obvious that the vortex travels in the opposite direction

to the rotor rotation near the rotor LE, e.g. the vortex V2 near LE suction surface of blade
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Figure 10.7: Structure of the LE vortex causing NSV above 80% rotor span colored by
negative axial velocity

2 at t=T1 moves to blade 3 LE at T=T1+2Δt.

As another evidence of the circumferential vortices traveling, the normalized static pres-

sure distributions on the rotor blade surface near 90% span are plotted in Fig. 10.10 and

Fig. 10.11. The low pressure regions represent the core of circumferentially traveling vor-

tices. For example, V1 core near 10% axial chord at t=T1 moves to about 20% axial chord

at t=T1+Δt. At t=T1, two vortex cores simultaneously appear on the blade passage 5 due

to the vortex leaving and coming, e.g. V4 and V5 in Fig. 10.7.

10.2.3 Propagating Frequency of the LE Vortex

The static pressure signals are acquired for the frequency analysis from total 60 numerical

probes mounted on a blade surface including tip clearance. The peak fluctuations among

those acquired pressure signals are observed around 80% span near the rotor LE due to

the travelling vortices as plotted in Fig. 10.12. Such a pressure oscillation due to the

traveling vortex generates a severe aerodynamic excitation, which results in the NSV of
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Figure 10.8: Axial velocity (u) contour near the blade tip section
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the compressor as identified from the frequency analysis in Fig. 10.13. The total sampling

time is about 7 rotor revolutions with more than 2048 samples. The frequency resolution is

about 30 Hz. The predicted dominant NSV excitation frequency is 2603 Hz, which agrees

excellently with the measured NSV frequency of 2600 Hz in the rig testing given in Fig.

10.1.

10.3 Results of Vibrating Blade Simulation

To be consistent with the work of [21], the computational mesh used for FSI simulation

has H-mesh layer at the rotor/IGV/stator interface, in which the conservative sliding BC is

used to handle the one-to-one matched grid. The model with a tip clearance of 2.4% tip

chord is used in this study.

10.3.1 The Baseline NSV Point

Because the structural damping of the blades is not available and generally smaller than

that of the aerodynamic damping, a uniform damping ratio of 0.001 is applied to all the

first five modes of the blades. Fig. 10.14 shows the modal displacements and spectrum

of physical displacement and unsteady pressure at about 80% span near the rotor leading

edge. It can been seen that the first mode (1F) is not damped by using the using damping

ratio and it is the dominant mode. Three dominant vibrations are observed in the spectrum

plot of circumferential displacement. The first one has a frequency of 1064 Hz, which is

the natural frequency of the 1F. The second one has a frequency of 1264 Hz, which is close

to the 6 engine order(EO) excitation frequency. The third one is close to the second natural
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mode (1T) and is considered as the NSV in this study. The 1F has highest amplitude and

the magnitude of the EO vibration is similar to that of the 1T.

The aerodynamic excitation frequency is 2476 Hz, as shown on the right plot of Fig.

10.14, which is close to the measured NSV frequency. The simulation with rigid blades

is also performed for comparison. It is observed that the same NSV excitation frequency

was captured by the rigid blade simulation. The results of rigid blade simulation indicate

that the NSV is caused by the flow excitation instead of the lock-in phenomenon that flow

frequency is synchronized with the structure frequency. This result is consistent with the

finding in [76] and the same aerodynamic excitation with the NSV frequency exists even

when the blades are not vibrating. It appears that the blade vibration is excited by the

aerodynamic forcing. However, it is too premature to draw the conclusion based on only

one point simulation. To have a more certain conclusion, The rotor speed is varied within

a small RPM range that the rig test detected the NSV to see if the structure response and

flow excitation have the same relationship. The results will be presented in the following

section.

10.3.2 Effects of Damping Ratio on NSV

Before studying if the NSV is a flow excitation phenomenon or lock-in phenomenon, efforts

were made to decide what the damping ratio should be used to better capture the NSV with

FSI simulation. In previous fluid structure interaction simulation [21, 76], there are two

dominant frequencies in every predicted spectrum of circumferential displacement. One

is near the first bending natural frequency and the other is close to the second natural

frequency. There exits only one dominant frequency that is close to 1T in the spectrum of
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strain gage measurement on the blade [17]. The other broad band frequencies near the 1F

are due to separated flow vibration. One reason that the numerical simulation capture two

dominant frequency may be that cantilever blade structure model is used to generate the

mode shape without considering the disk. In reality, the mode shapes of the blades would

be affected by the disk and shaft system. All these factors could affect the accuracy of

mode shape and frequency using finite element method. As the attempt to make the single

NSV frequency outstanding as in the rig test by using the numerical simulation, different

damping ratio combinations are tested as an ad hoc approach.

Table. 10.1 lists different damping ratios tested in the calculations. Total 8 damping

ratio combinations are tested to see if the torsional mode can be made dominant. The case

D0 is the same as that used in the previous section 10.3.1

The results of D1 to D7 are shown in Fig. 10.16 to Fig. 10.22 respectively. In the com-

bination of D1 to D6, The damping coefficient of the mode 1 is substantially increased with

the hope to damp the 1T mode. However, the first mode is not damped much. The aerody-

namic excitation near 1T may disappear when the amplitude of the 1F is much lower than

the 1T as shown in the case D4 and D6. It is definitely not a simple relationship between

the vibration of 1F and the aerodynamic excitation near 1T for the present compressor and

the structural model. The damping ratio in case D7 is set to investigate the effect the vi-

bration of the 1F on the NSV excitation. It can be seen that the NSV excitation is captured

even the second mode is damped and the amplitude of 1F is higher. The NSV aerodynamic

excitation is independent on the structure 1F and 1T modes.

Case D5 does capture a dominant 1T and the NSV excitation by this ad hoc method, as

shown in Fig. 10.20. In case D5, ζ1=0.05 is used and the damping coefficient of 0.001 is
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used for all the higher order modes. Both 1F and 1T can be observed in modal displacement

plot. The 1T has higher amplitude than the 1F. The spectrum of circumferential displace-

ment is similar to the case D0. However, the frequency of the most dominant vibration is

2607 Hz, which is 1T. The 1F becomes the third dominant vibration. And the magnitude

of the EO vibration is similar to the 1T.

Table 10.1: Damping ratio test cases
Case ζ1 ζ2 ζ3 ζ4 ζ5
D0 0.001 0.001 0.001 0.001 0.001
D1 0.005 0.001 0.0001 0.00007 0.00004
D2 0.010 0.001 0.0001 0.00007 0.00004
D3 0.010 0.001 0.001 0.001 0.001
D4 0.020 0.001 0.001 0.001 0.001
D5 0.030 0.001 0.001 0.001 0.001
D6 0.050 0.001 0.001 0.001 0.001
D7 0.000 0.050 0.000 0.000 0.000
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Figure 10.9: Movement of the traveling vortex V2 in the opposite rotor rotation direction
at t=T1, T1+Δt, T1+2Δt during the NSV
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Figure 10.18: Case D3: Modal displacement(Left), FFT of physical displacement(Middle)
and pressure(Right)
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Figure 10.19: Case D4: Modal displacement(Left), FFT of physical displacement(Middle)
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Figure 10.20: Case D5: Modal displacement(Left), FFT of physical displacement(Middle)
and pressure(Right)
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Figure 10.21: Case D6: Modal displacement(Left), FFT of physical displacement(Middle)
and pressure(Right)
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10.3.3 Examination of the Locked-in Phenomenon

In the rig test as shown in Fig. 10.1 [17], the NSV frequency varies from 2661 Hz to 2600

Hz when the wheel speed is increased from 12700 to 12880 RPM The shaft speed used

in previous simulations is 12973 RPM, about 0.7% away from 12880 RPM. The previous

simulation shows that the blade NSV frequency is the same as the aerodynamic excitation

frequency when the rigid blades are used. It means that the NSV in this compressor is

not a lock-in phenomenon. it is not conclusive if the simulation is conducted at only one

point since the blade vibration frequency may happen to be the same as the aerodynamic

excitation frequency.

To have a more conclusive understanding whether NSV is caused by flow excitation

or a lock-in phenomenon, more points at different rotor speeds need to be studied. FFT

analysis will be performed with the time history of pressure and displacement near the

rotor leading edge in order to check if the aerodynamic frequency is lock in to the blade

natural frequency. If the aerodynamic frequency follows the blade natural frequency at

different RPM, the lock-in occurs. Otherwise, it is not. The spectrum analysis in this study

are conducted mainly by using the data near the rotor leading edge at about 80% span

since high amplitude of aerodynamic excitation is found in this region. Fig. 10.23 shows

the spectrum of pressure from all the numerical probes on the blade surface. The highest

pressure amplitude occurs near the the rotor leading edge at about 80% span.

Fig. 10.24 shows the operating line with varied rotor speeds calculated by the unsteady

simulations with and without FSI. On the operating line, the total pressure and mass flow

rate at the IGV inlet and rotor exit are averaged. It can be seen that the total pressure ratio

increases linearly as the wheel speed increases. All the flows are dynamically stable.
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Figure 10.23: Spectrum of pressure on blade 3

The modal displacements and spectrum of physical displacement and unsteady aerody-

namic pressure of different cases are shown in Fig. 10.26 through Fig. 10.33. The spectrum

of rigid blade simulations are also plot for comparison.

Table. 10.2 summarizes all the results of different shaft speeds in the simulations. Case

R5 is the same as the previous case as shown in Fig. 10.20, which used 12973 RPM as

the wheel speed. The shaft speed of R1 is about 0.9% lower than the left boundary(12700

RPM), and R9 is about to 3.7% higher than the right boundary(12880 RPM) in the RPM

range that shows near 1T NSV in the rig test, as shown in Fig. 10.1. In the table, the third

row is the dominant frequency of the aerodynamic excitation from rigid blade simulation.

The 4th row is the dominant frequency of the aerodynamic excitation from flexible blade

simulation. The 5th row is the structure vibration frequency near 1T, which is taken as

NSV in this research.

Fig. 10.25 is the Campbell diagram of the predicted blade vibration frequency near

the 2nd mode compared with the experiment. It can be seen that most of the predicted
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responses are not engine order vibration. The near engine order vibrations occur in case

R6 and R7, in which the wheel speeds are 13037 RPM and 13103 RPM respectively. It

is noted that not all those structure responses near the 1T mode are dominant because the

1st mode may be more dominant. The criteria to determine if NSV occurs are two folds

determined from the FSI simulation: 1) The blade vibration frequency must be near 1T as

observed in the rig test; 2) The blade vibration amplitude under that frequency must be the

dominant one. The dominant blade vibration frequency near the 1T mode captured are case

R1, R2, R5, R6 and R9. Since the frequency in R6 is on engine order that disqualifies R6

as a NSV case. The dominant NSV near 1T mode in this rotor speed variation study are

case R1, R2, R5 and R9.

After examining the results from Fig. 10.26 to 10.33 and Table. 10.2, NSV cases of R1,

R2, R5, and R9, the aerodynamic excitation frequencies of the rigid blades are the same

as those with vibrating blades in the rotor speed variation study. This observation confirms

the previous speculation from the single rotor speed simulation that the NSV is excited

by the aerodynamic forcing instead of a lock-in phenomenon. For the NSV case R9 as

shown in Table. 10.2, the rigid blade aerodynamic excitation frequency does not match the

NSV blade vibration frequency. When the blades vibrate as NSV, the pressure oscillation

frequency remains the same and is not changed to "lock-in" with the blade 1T vibration

frequency. Hence, it can be concluded that the NSV occurred in this compressor is not a

lock-in phenomenon, but is excited by aerodynamic force.

Fig. 10.34 compares the blade vibration amplitude of the near 1T vibration mode in

the FSI simulation with rotor speed variation. The trend does agree well with the NSV am-

plitude measurement as shown in Fig. 10.1. The wheel speeds with the highest amplitude
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are found in case R5 and R6. Since case R6 is disqualified as an NSV point due to the

frequency being very close to the engine order, the case R5 has the largest NSV amplitude.

Table 10.2: Shaft speed test cases with and without FSI
Case R1(NSV) R2(NSV) R3 R4 R5(NSV) R6 R7 R8 R9(NSV)
RPM 12584 12714 12843 12908 12973 13037 13103 13232 13362
Rigid blade (Dom-
inant pressure fre-
quency,Hz)

2453 2489 2453 2470 2476 2489 1783 1796 1860

FSI, (Dominant pres-
sure frequency, Hz) 2453 1731 2453 2470 2476 1845 2489 1796 1845

FSI, Response near
1T (θ , Hz) 2607 2611 2607 2620 2615 2607 2620 2607 2607
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Figure 10.26: Case R1: Modal displacementleft, FFT of physical displacement(middle)
and pressure(right).
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Figure 10.27: Case R2: Modal displacementleft, FFT of physical displacement(middle)
and pressure(right).
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Figure 10.28: Case R3: Modal displacementleft, FFT of physical displacement(middle)
and pressure(right)
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Figure 10.29: Case R4: Modal displacementleft, FFT of physical displacement(middle)
and pressure(right).
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Figure 10.30: Case R6: Modal displacementleft, FFT of physical displacement(middle)
and pressure(right).
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Figure 10.31: Case R7: Modal displacementleft, FFT of physical displacement(middle)
and pressure(right).
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Figure 10.32: Case R8: Modal displacementleft, FFT of physical displacement(middle)
and pressure(right).
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Figure 10.33: Case R9: Modal displacementleft, FFT of physical displacement(middle)
and pressure(right).
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10.3.4 Single Mode FSI Simulation

Flutter in a single natural mode is usually observed in turbomachinery blade rows vibra-

tion [4]. Hence, engineers often conduct a single mode blade aeroelastic analysis to save

computational cost [8]. The NSV frequency observed in the present compressor stage is

near the 1st torsional mode. One more efficient way of numerical simulating the NSV be-

havior may be to ignore all the other four modes and consider only the 2nd mode in the

structural equation. The FSI simulation with one mode only is conducted in this section

with the damping coefficient of 0.001 for the 2nd mode. The purpose of conducting the

one mode FSI simulation is to compare its performance with the multiple modes simula-

tion presented in the previous subsections.

Fig. 10.35 shows the modal displacements and spectrum of physical displacement and

unsteady pressure with the R5 wheel speed at about 80% span near the rotor leading edge.

The NSV excitation and vibration are well captured with the 2nd mode only simulation.

Both the predicted structural vibration frequency and aerodynamic excitation frequency

match well with the case considering all modes.
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10.4 Conclusion

In this chapter a high speed axial compressor is simulated with and without blade vibration

to investigate the lock-in phenomenon during NSV mechanism. Time accurate 3D com-

pressible Navier-Stokes equations are solved with a system of 5 decoupled modal equations

in a fully coupled manner. A 1/7th annulus sector of IGV-rotor-stator is used with a time-

shifted phase lag BC at circumferential boundaries to reduce computational efforts.

The URANS simulation with tip model 1 predicting a dominant frequency of 2476 Hz

caused by an aerodynamic excitation from circumferentially traveling vortices agrees the

NSV frequency measured from the rig testing. The results from the fully coupled fluid

structure simulation captures the blade NSV frequency that also agrees with the measure-

ment. The predicted aerodynamic excitation frequency at one rotor speed matching the

predicted blade NSV frequency indicates that the NSV is caused by the flow excitation

instead of a lock-in phenomenon. Lock-in will have the flow frequency altered from its

inherent frequency and synchronized with the structure frequency. To confirm this obser-

vation, multiple rotor speeds varied around the resolved NSV condition are simulated with

rigid and vibrating blades. The same conclusions are drawn. With the rotor speed varia-

tion, the blade NSV amplitude step variation trend similar to that measured in the rig test

is obtained.

The FSI simulation capturing the 1T NSV frequency is usually accompanied with a

dominant amplitude of the 1F mode. In the rig test, only the dominant 1T mode was ob-

served. Such inconsistency with the rig testing is attributed to the inaccurate damping co-

efficients prescribed. Since the mechanical damping coefficients are in general not known,

but are considered as very small, an ad hoc approach by assigning values guessed based
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on physical estimation is used. The 1T dominant NSV excitation is achieved by using a

damping ratio of 0.03 for the first mode and 0.001 for the other modes. The FSI simulation

with one dominate structure mode only gives similar results as using multiple modes.



Chapter 11

Conclusions

In this thesis a high fidelity FSI methodology is developed and adopted for aircraft wing and

turbomachinery aeromechanics simulation by the following numerical techniques, includ-

ing the low diffusion E-CUSP shock-capturing Riemann solver with high order WENO

schemes, the delayed detached eddy simulation of turbulence, the fully coupled fluid-

structure interaction, the sliding interpolation BC for rotor/stator interaction, and the phase

lag boundary conditions. Thorough validation is conducted to demonstrate high accuracy

and robustness of the high fidelity FSI simulation methodology. The mechanisms of sonic

dip of transonic wing, stall inception and stall flutter of transonic compressor stage and

non-synchronous vibration of high speed compressor stage are investigated with the high

fidelity FSI methodology.
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11.1 Main Conclusions

11.1.1 Projectile Flows

In the validation of projectile flows, the DDES demonstrates its excellent ability to ac-

curately simulate the vortical base flow. The predicted drag coefficient for the projectile

by the DDES shows a good agreement with the experiment. For an ARDEC Projectile at

M=0.752, AoA=0◦ and 4◦, the DDES significantly reduces the axial force prediction error

to about 4%, whereas the URANS has an error of 12%, and the RANS has an error of 16%

to 23%. The primary difference of the drag prediction between the DDES and URANS is

the pressure drag prediction in the base region. The DDES is demonstrated to be superior

to the URANS for the projectile flow prediction due to more accurate base large vortex

structures and pressure simulation.

11.1.2 Wing-Body Flows

For the wing body configuration simulation, the predicted CL results of both RANS and

URANS show good agreement with experiment. The maximum errors are less than 3% in

all test cases. The coarse mesh provides better results than medium and fine mesh. The

drag counts deviation from the experiment predicted by the DDES are less than those of

RANS and URANS. This indicates the advantage of DDES in turbulence modeling. The

predicted friction drag counts difference between the URANS and DDES is less than one

count for the case at AoA=0.49◦. The reason may be that DDES method employ the same

turbulence model as URANS within the wall boundary layer. For the predicted pressure

drag, DDES provides about 2 drag counts more accurate than RANS and URANS. The
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prediction by using the 5th WENO scheme provides lowerCL and drag counts than the 3rd

order schemes.

11.1.3 Transonic Wing Flutter

The high fidelity FSI methodology is validated by predicting the transonic AGARD wing

flutter boundary with free stream Mach number varied from subsonic to supersonic. The

predicted flutter boundary at different free stream Mach number including the sonic dip

achieves very good agreement with experiment. In particular, the predicted flutter bound-

aries at the two supersonic conditions match the experiment accurately.

The weight of the torsional mode that contributes to the flutter of the wing decreases at

transonic and supersonic regime. The contribution of the bending mode to structural flutter

increases abruptly at transonic Mach number 0.96 at which the sonic dip occurs. It appears

that the transonic dip is related to the anticlimax of the second mode in transonic regime.

The FSI simulation gives the following observations at the sonic dip condition. The shock

strength is enhanced more near the trailing edge at near sonic Mach number. The shock

location and motion decrease the pitching moment of the wing, which drops sharply at

the sonic dip Mach number, The decreased pitching moment induces lower torsional mode

vibration. It creates an anticlimax of the amplitude ratio of the first mode to second mode

at the sonic dip.

11.1.4 Supersonic Panel Flutter Simulation

In the panel aeroelasticity investigation, delayed detached eddy simulation is performed to

simulate a supersonic panel vibration at Mach 2.0. The shock waves and their reflection
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interacting with turbulent boundary layer in the tunnel are well captured by the DDES. The

panel vibration induced by the shock boundary layer interaction is well resolved. The dom-

inant panel response agrees with the experiment in terms of the mean panel displacement

and frequency. Even though the linear model structure model performs very well in this

simulation, the next step would be to incorporate nonlinear finite element model to further

improve the accuracy. It takes one week wall clock time to run 0.1s physical time with 264

CPUs using parallel computing. Since it is a fully coupled fluid-structural interaction sim-

ulation, the flow and structure responses are captured by the solver itself with no parameter

adjustment.

11.1.5 Compressor Stage Stall Inception

The full annulus DDES is conducted for the first time to investigate rotating stall inception

mechanism of the transonic NASA Stage 35 with sliding interpolation BC. The details

of the flow breakdown that leads to fully developed rotating stall is well captured by the

present numerical simulation. The simulation shows that the rotor stall onset begins with

modal disturbance followed rapidly by two spike disturbance. The size of the onset stall

cell cover about 5 to 6 rotor blade passages. The propagation speed of stall cell is about

42% of rotor rotating speed. This DDES of stall inception captures two stall cells whereas

the previous URANS simulation only has one stall cell propagating at about 90% rotation

speed. The different propagating speed of stall cells between the URANS and the DDES

may be due to the different circumferential mass flux in relative frame.

The vortex trajectory aligned in the blade pitching direction is an indicator that the stall

inception is imminent. The spike stall inception appears to be characterized as the tip vortex
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rolling up and ending on the casing wall with the vortex axis mostly in the radial direction.

Similar to the conclusions in Im et al. [1], the DDES captures many small scale structures

of the stall inception, whereas the URANS tends to smear the flow structures due to the

Reynolds time average.

11.1.6 Compressor Stall Flutter

A high fidelity methodology of 3-D fluid-structural interaction is conducted for predicting

blade flutter in a transonic compressor stage with rotor-stator interaction at near stall con-

ditions. The full 3D unsteady Navier-Stokes equations are solved with Spalart Allmaras

turbulence model. The DDES of stall flutter is conducted near stall condition for com-

parison. The flow solver and the structural solver are fully coupled via pseudo time step

within each physical time step. An efficient and accurate modal approach solver is used for

simulating the structural responses with the first five major mode shapes of the blade. The

NASA Stage 35 is selected to demonstrate the methodology and simulation capability.

The fully coupled FSI simulation is conducted along the speedline. For all the operating

points, the amplitude of the blade vibration increase gradually and the blade appear to

flutter without adding structural damping to the vibration system. And with 0.001 structural

damping, the blade are damped since the flows are fairly steady before the stalling point E.

However, the blade vibration response diverges at stalling point E. It appear that the NASA

Stage 35 flutter due to the rotating stall.
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11.1.7 Compressor NSV Lock-in Investigation

The high fidelity method was also used to investigate the locked-in phenomenon of a high

speed axial compressor stage. Time accurate 3D compressible Navier-Stokes equations are

solved with a system of 5 decoupled modal equations in a fully coupled manner. A 1/7th

annulus sector of IGV-rotor-stator is used with a time-shifted phase lag BC at circumferen-

tial boundaries to reduce computational efforts.

The URANS simulation for rigid blades predicts a dominant frequency of the traveling

vortices at a non-engine order at 2476 Hz at physical speed recommended by manufac-

turer, which agree with the NSV frequency obtained from the rig testing. The results from

the fully coupled fluid structure simulation captures the blade NSV that agrees with the

measurement at the same predicted aerodynamic excitation frequency with rigid blades.

The 1T dominant NSV excitation is achieved by using a damping ratio of 0.03 for the

first mode and 0.001 for the other modes. A similar step change of frequency versus ro-

tor rotating speed as that in the measurement is obtained by the high fidelity fully coupled

FSI. The mismatches of the forcing frequency and the blade response frequency at different

shaft speeds indicate that the NSV of this compressor is excited by aerodynamic forcing

instead of being caused by flow frequency/phase locking to structural frequency. The com-

parisons of the flexible blade simulations and rigid blade simulations demonstrate the NSV

excitation is independent of the blade vibration.

11.2 Contributions

The main contributions in this research are the following:
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• Sliding interpolation BC for rotor/stator interaction

• Investigation of sonic dip mechanism

• Develop fully coupled fluid-structure interaction for panel flutter simulation

• Delayed detached simulation of the stall inception in NASA Stage 35

• Delayed detached simulation of stall flutter in NASA Stage 35

• Examination of lock-in phenomenon for compressor non-synchronous vibration

11.3 Future Work

Further Investigation of the Mechanism of Sonic Dip Phenomenon

The physical mechanism of the sonic dip phenomenon is related to the anticlimax of the

second mode and pitching moment. The complex shock oscillation near sonic dip is the

cause of anticlimax of the second mode and pitching moment. However, a quantitative

relation between the shock oscillation and the amplitude of the second mode is not available

yet. Efforts to study the shock oscillation and aerodynamic damping at different Mach

number should be made to further understand the mechanism of sonic dip.

DDES of NSV

In Chapter 10, the URANS under-predicts the NSV frequency because the URANS tends

to smear the small scale vortices. The DDES has shown it’s advantage in large vortex flow
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simulation compared with that of URANS in Chapter 8. The use of DDES in NSV may

improve the accuracy in the prediction of NSV frequency.
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