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Abstract

A numerical methodology coupling Navier–Stokes equations and structural modal equations for predicting 3-D transonic wing flutter
is developed in this paper. A dual-time step implicit unfactored Gauss-Seidel iteration with the Roe scheme is employed for the flow
solver. A modal approach is used for the structural response. The flow and structural solvers are fully coupled via successive iterations
within each physical time step. The mesh-deformation strategy is described. The accuracy of the modal approach is validated with
ANSYS. The results indicate that the first five modes are sufficient to accurately model the wing-structure response for the studied case
of this paper. The computed flutter boundary of AGARD wing 445.6 at free stream Mach numbers ranging from 0.499 to 1.141 agrees
well with the experiment.
� 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Reliable and efficient flutter analysis of airplane wings or
aircraft-engine turbomachinery blades is a critical issue in
determining the reliability of aircraft. Flutter occurs as a
result of the fluid–structural interaction and is usually asso-
ciated with complicated phenomena such as the shock
wave/boundary layer interaction, flow separation, non-lin-
ear limit cycle oscillations, etc. Flutter predictions using a
three-dimensional Navier–Stokes model with fully coupled
iteration are very challenging due to the perplexing physi-
cal phenomena and the large amount of computation
work. In the present paper, an effort has been made to
develop a methodology for high fidelity prediction of air-
craft flutter.

There are generally two types of methods used to calcu-
late the fluid–structure interaction problems in the time

domain: the fluid and structure governing equations are
loosely coupled or fully coupled. The loosely coupled
model means that the structural response lags behind the
flow field solution. This type of method may be limited
to first-order accuracy in time regardless of the temporal
accuracy of the individual solvers [1]. In the fully coupled
model, the flow field and structure always respond simulta-
neously by exchanging the aerodynamic forcing and struc-
tural displacement within each iteration. Logically, only
the fully coupled model is rigorous in the physical sense
because, in reality, the structural displacement responds
instantly to the forces acted by the fluid.

Among the researchers in the area of 3-D time-march-
ing aeroelastic analysis based on Euler/Navier–Stokes
approaches, Lee-Rausch and Batina [2,3] used a three-
factor, implicit, upwind-biased Euler/Navier–Stokes
approach coupled with a lagged structure solver. Morton,
Melville and Gordnier et al. developed an implicit fully
coupled fluid-structure interaction model, which used the
Beam-Warming implicit approximate factorization scheme
for the flow solver coupled with a modal structural solver
[4,5,1,6]. Liu et al. developed a fully coupled method using
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Jameson’s explicit scheme with a multigrid approach
utilizing the Euler equations and a modal structural model
[7]. Doi and Alonso [8] coupled an explicit Runge–Kutta
multigrid RANS flow solver with a FEM structure solver
to predict the aeroelastic responses of a NASA Rotor 67
blade.

Chen et al. [9,10] have recently developed a fully coupled
methodology between fluid and structure for 2-D flow-
induced vibrations. In their method, the Roe scheme is
extended to the moving grid system. The unsteady solu-
tions march in time by using a dual-time stepping implicit
unfactored Gauss-Seidel iteration. The unsteady Navier–
Stokes equations and the structural equations are fully cou-
pled implicitly via successive iteration within each physical
time step.

In present study, the method developed by Chen et al.
[9,10] is extended to 3-D transonic flutter prediction of a
flexible wing. The structural response is calculated by
the efficient modal approach. Compared with the differ-
ent methods aforementioned for 3-D aeroelastic analysis,
the methodology of this paper has the following
advantages:

(1) The unfactored Gauss-Seidel iteration is uncondi-
tionally stable and allows larger pseudo or physical
time steps than an explicit method. It avoids the fac-
torization error introduced by those implicit approx-
imate factorization methods, such as those used in
[2,4,5,1,6]. Even though the factorization error dimin-
ishes within each physical time step, the factorization
error can limit the numerical stability. The linear sta-
bility analysis shows that an approximate factorized
method is not stable for 3-D computation even
though it is stable for 2-D computation.

(2) Unlike the central differencing schemes used in
[4,5,1,6,7], the Roe scheme has inherent low dissipa-
tion and does not need additional artificial dis-
sipation, which may need to be calibrated case by
case. The adjusted numerical dissipation may signif-
icantly affect the flow damping of the structural
response.

(3) As mentioned previously, the fully coupled approach
is a rigorous approach to reflect the instantaneous
interaction between the flow and structure and is
more accurate than the loosely coupled methods such
as those used in [2,3,8].

The objective of this paper is to develop a methodology
for 3-D transonic wing-flutter prediction with fully coupled
fluid-structure interaction. The modal approach structure
solver is used for the structural response in the computa-
tion. The flutter boundary of AGARD Wing 445.6 is pre-
dicted for free stream Mach numbers ranging from 0.499 to
1.141. In general, the computed results show good agree-
ment with the experiment and indicate that the present
methodology is robust and accurate for realistic aeroelastic
analysis.

2. CFD aerodynamic model

2.1. Flow governing equations

The governing equations for the flow field computation
are the Reynolds-Averaged Navier–Stokes equations
(RANS) with Favre mass average which can be transformed
to the generalized coordinates (n,g,f) and expressed as

oQ0

ot
þ oE0

on
þ oF0

og
þ oG0

of
¼ 1

Re
oE0v
on
þ oF0v

og
þ oG0v

of

� �
ð1Þ

where Re is the Reynolds number and

Q0 ¼ Q

J
ð2Þ

E0 ¼ 1

J
ðntQþ nxEþ nyFþ nzGÞ ¼

1

J
ðntQþ E00Þ ð3Þ

F0 ¼ 1

J
ðgtQþ gxEþ gyFþ gzGÞ ¼

1

J
ðgtQþ F00Þ ð4Þ

G0 ¼ 1

J
ðftQþ fxEþ fyFþ fzGÞ ¼

1

J
ðftQþG00Þ ð5Þ

E0v ¼
1

J
ðnxEv þ nyFv þ nzGvÞ ð6Þ

F0v ¼
1

J
ðgxEv þ gyFv þ gzGvÞ ð7Þ

G0v ¼
1

J
ðfxEv þ fyFv þ fzGvÞ ð8Þ

where the geometry metrics are defined as

nx ¼ Jðygzf � yfzgÞ; ny ¼ Jðxfzg � xgzfÞ;
nz ¼ Jðxgyf � xfygÞ gx ¼ Jðyfzn � ynzfÞ;
gy ¼ Jðxnzf � xfznÞ; gz ¼ Jðxfyn � xnyfÞ
fx ¼ Jðynzg � ygznÞ; fy ¼ Jðxgzn � xnzgÞ;
fz ¼ Jðxnyg � xgynÞ nt ¼ �ðxsnx þ ysny þ zsnzÞ;
gt ¼ �ðxsgx þ ysgy þ zsgzÞ; ft ¼ �ðxsfx þ ysfy þ zsfzÞ

The variable vector Q, and inviscid flux vectors E, F, and G
are:

Q ¼

�q

�q~u

�q~v

�q~w

�q~e

0
BBBBBB@

1
CCCCCCA
; E ¼

�q~u

�q~u~uþ ~p

�q~u~v

�q~u~w

ð�q~eþ ~pÞ~u

0
BBBBBB@

1
CCCCCCA
;

F ¼

�q~v

�q~u~v

�q~v~vþ ~p

�q~w~v

ð�q~eþ ~pÞ~v

0
BBBBBB@

1
CCCCCCA
; G ¼

�qw

�q~u~w

�q~v~w

�q~w~wþ ~p

ð�q~eþ ~pÞ~w

0
BBBBBB@

1
CCCCCCA

The E00, F00, and G00 are the inviscid fluxes at the stationary
grid system and can be expressed as
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E00 ¼ nxEþ nyFþ nzG;

F00 ¼ gxEþ gyFþ gzG;

G00 ¼ fxEþ fyFþ fzG

and the viscous flux vectors are given by

Ev ¼

0

�sxx � qu00u00

�sxy � qu00v00

�sxz � qu00w00

Qx

0
BBBBBB@

1
CCCCCCA
; Fv ¼

0

�syx � qv00u00

�syy � qv00v00

�syz � qv00w00

Qy

0
BBBBBB@

1
CCCCCCA
;

Gv ¼

0

�szx � qw00u00

�szy � qw00v00

�szz � qw00w00

Qz

0
BBBBBB@

1
CCCCCCA

In above equations, q is the density, u, v, and w are the
Cartesian velocity components in x, y and z directions,
respectively, p is the static pressure, and e is the total energy
per unit mass. The overbar denotes the Reynolds-averaged
quantity, tilde and double-prime denote the Favre mean
and Favre fluctuating part of the turbulent motion respec-
tively. All the flow variable in above equations are normal-
ized by the freestream quantities and a reference length L.

Let subscript 1, 2 and 3 represent the coordinates, x, y,
and z, and use Einstein summation convention, the shear-
stress and Qx, Qy, Qz terms in non-dimensional forms
can be expressed in tensor form as

�sij ¼ �
2

3
~l

o~uk

oxk
dij þ ~l

o~ui

oxj
þ o~uj

oxi

� �
ð9Þ

Qi ¼ ~ujð�sij � qu00u00Þ � ð�qi þ CpqT 00u00i Þ ð10Þ

where the mean molecular heat flux is

�qi ¼ �
~l

ðc� 1ÞPr
oa2

oxi
ð11Þ

The molecular viscosity ~l ¼ ~lð~T Þ is determined by Suth-
erland law, and a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
cRT1
p

is the speed of sound. The
equation of state closes the system

�q~e ¼ ~p
ðc� 1Þ þ

1

2
�qð~u2 þ ~v2 þ ~w2Þ þ k ð12Þ

where c is the ratio of specific heats, k is the Favre mass-
averaged turbulence kinetic energy. The turbulent shear
stresses and heat flux appeared in above equations are cal-
culated by Baldwin–Lomax model [11]. The viscosity is
composed of l + lt, where l is the molecular viscosity
and lt is the turbulent viscosity determined by Baldwin Lo-
max model. For a laminar flow, the lt is set to be zero.

2.2. Time marching scheme

The time dependent governing equation (1) is solved
using the control volume method with the concept of dual

time stepping suggested by Jameson [12]. A pseudo tempo-
ral term oQ

os is added to the governing Eq. (1). This term
vanishes at the end of each physical time step, and has
no influence on the accuracy of the solution. However,
instead of using the explicit scheme as given by Jameson
in [12], an implicit pseudo time marching scheme using line
Gauss-Seidel line iteration is employed to achieve high con-
vergence rate. The physical temporal term is discretized
implicitly using a three point, backward differencing as
the following:

oQ

ot
¼ 3Qnþ1 � 4Qn þ Qn�1

2Dt
ð13Þ

where n is the time level index. The pseudo temporal term is
discretized with the first order Euler scheme. Let m

stand for the iteration index within a physical time step,
then the semi-discretized governing equation (1) can be
expressed as

1

Ds
þ 1:5

Dt

� �
I � oR

oQ

� �nþ1;m
" #

dQnþ1;mþ1

¼ Rnþ1;m � 3Qnþ1;m � 4Qn þ Qn�1

2Dt
ð14Þ

where the Ds is the pseudo time step, R is the net flux going
through the control volume,

R ¼ � 1

V

Z
s
½ðF � F vÞiþ ðG� GvÞjþ ðH � HvÞk� � ds ð15Þ

where V is the volume of the control volume, s is the con-
trol volume surface area vector.

Since the O-mesh is used, the line tri-diagonal block
matrix solver is along the n direction, which is around
the airfoil on a 2D plane. Two alternating direction line
sweeps are used in each pseudo time step with one sweep
from minimum g, f index to maximum index, and the other
from maximum index to minimum index. The alternative
sweep directions are beneficial for the information propa-
gation to reach a high convergence rate. Within each phys-
ical time step, the solution marches in pseudo time until
converged. The method is unconditionally stable and can
reach a very large pseudo time step since no factorization
error is introduced.

2.3. Roe’s Riemann solver on moving grid system

An accurate Riemann solver is necessary to resolve the
shock wave and wall boundary layer in the flow field.
The Roe scheme [13] is selected and implemented in the
code to evaluate the inviscid fluxes with the 3rd order
MUSCL type differencing [14]. In the present study, the
original Roe scheme is extended to a moving-grid system
as the following, for example, in n direction:

E0iþ1
2
¼ 1

2J
½E00ðQLÞ þ E00ðQRÞ þQLntL

þQRntR � j~AjðQR �QLÞ�iþ1
2

ð16Þ
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where QL and QR are the reconstructed variables to the left
and right sides of the cell face, ntL and ntR are the recon-
structed grid velocity components in n-direction to te left
and right sides of the cell interface iþ 1

2
, A is the Jacobian

matrix, A ¼ oE0

oQ
and it takes the form A = TKT�1, where T

is the right eigenvector matrix of A, K is the eigenvalue ma-
trix of A, and

~A ¼ ~T~K~T�1 ð17Þ
where ~K is the eigenvalue matrix on a moving-grid system
with the eigenvalues of

ð ~U þ ~C; ~U � ~C; ~U ; ~U ; ~UÞ ð18Þ

where Ũ is the contravariant velocity in the n-direction on
the moving grid,

~U ¼ ~nt þ nx~uþ ny~vþ nz ~w ð19Þ

~C is the speed of sound corresponding to the contravariant
velocity:

~C ¼ ~c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y þ n2

z

q
ð20Þ

where c ¼
ffiffiffiffiffiffiffiffiffi
cRT
p

is the physical speed of sound. The �
stands for the Roe-averaged quantities. For example,

~nt ¼ ðntL þ ntR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR=qL

p
Þ=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR=qL

p
Þ ð21Þ

It can be proved that the eigenvector matrix T has
exactly the same form as the one without a moving grid.
The only difference between the moving-grid and the
stationary-grid systems is that, for the moving-grid system,
the contravariant velocity in the eigenvalues contains the
grid velocity as given in Eq. (19). It is hence straightfor-
ward to extend the code from a stationary-grid system to
the moving-grid system using the Roe scheme without a
major change.

The grid velocity is evaluated at the center of each cell
and is determined by the averaged value that counts the
movement of the eight vertexes if hexahedral control vol-
umes are used. The grid velocity is reconstructed with
3rd-order MUSCL differencing.

2.4. Boundary conditions

The boundary conditions for the computation of wing
flutter are as follows:

(1) Upstream boundary conditions: The outer boundary
is divided into upstream and downstream boundaries
according to whether the direction of its segment is
toward or backward to the incoming-flow direction.
On the upstream boundary, it is assumed that the
streamwise velocity u is uniform, the transverse veloc-
ity v = 0, and the spanwise velocity w = 0. Other
primitive variables are specified according to the free-
stream condition except the pressure which is extrap-
olated from the interior.

(2) Downstream boundary conditions: All the flow quan-
tities are extrapolated from the interior except the sta-
tic pressure which is set to equal its freestream value.

(3) Solid wall boundary conditions: At a moving-bound-
ary surface, the no-slip condition is enforced by
extrapolating the velocity between the phantom and
interior cells,

u0 ¼ 2 _xb � u1; v0 ¼ 2 _yb � v1; w0 ¼ 2_zb � w1 ð22Þ

where u0, v0 and w0 denote the velocity at the phan-
tom cell, u1, v1 and w1 denote the velocity at the first
interior cell close to the boundary, and ub, vb and wb

are the velocity components on the moving
boundary.

If the wall surface is in g direction, the other two condi-
tions to be imposed on the solid wall are the adiabatic wall
condition and the inviscid normal momentum equation [4]
as follows:

oT
og
¼ 0;

op
og
¼ � q

g2
x þ g2

y þ g2
z

 !
ðgx€xb þ gy€yb þ gz€zbÞ ð23Þ

2.5. Moving/deforming grid systems

In the fully coupled computation, the remeshing is per-
formed in each iteration. Therefore, a CPU time-efficient
algebraic grid-deformation method is employed in the com-
putation instead of the commonly used grid-generation
method in which the Poisson equation is solved for grid
points. For clarity, the remeshing procedure for 2D cases
is sketched in Fig. 1. This grid deformation procedure is
designed in such a way that the far-field boundary
(j = jlp) is held fixed, and the grids on the wing surface
(j = 1) move and deform following the instantaneous
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j = 1

j = jlp

j

dyj

dxj

dy1

dx1 Old wing surface

New wing surface

Far-field boundary
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(xj,yj)

(x1,y1)

Fig. 1. A sketch of the mesh deformation.
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motion of the wing structure. After the new wing surface is
determined, two components of the displacement vector at
a wing surface node dx1 and dy1 can be calculated accord-
ingly. First, the length of each segment along the old mesh
line is estimated as

sj ¼ sj�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xj�1Þ2 þ ðyj � yj�1Þ

2
q

ðj ¼ 2; . . . ; jlpÞ
ð24Þ

where s1 = 0 and the displacement vectors at wing surface
node (dx1, dy1) and at the far-field boundary (dxjlp, dyjlp)
are known. Then the grid node points between the wing
surface and the far-field boundary can be obtained by using
following linear interpolation:

dxj ¼
dxjlp � dx1

sjlp � s1

sj þ
dx1sjlp � dxjlps1

sjlp � s1

ð25Þ

dyj ¼
dyjlp � dy1

sjlp � s1

sj þ
dy1sjlp � dyjlps1

sjlp � s1

ð26Þ

This simple remeshing strategy is proved to be robust
for all the cases investigated in the present study. By mon-
itoring the accuracy criterion y+, it is shown that the
method can maintain the initial grid quality and keep
almost the same mesh distribution around the wing
surface.

For a 3-D case, Eq. (24) becomes

sj ¼ sj�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xj�1Þ2 þ ðyj � yj�1Þ

2 þ ðzj � zj�1Þ2
q

ðj ¼ 2; . . . ; jlpÞ ð27Þ

and one more equation is added to determine the z compo-
nent of displacement vector:

dzj ¼
dzjlp � dz1

sjlp � s1

sj þ
dz1sjlp � dzjlps1

sjlp � s1

ð28Þ

2.6. Geometric conservation law

It was pointed out by Thomas et al. [15] that due to the
mixed temporal and spatial derivatives after discretization,
an additional term appears, which theoretically equals to
zero but numerically still remains. Consequently numerical
errors could be introduced into the discretized form of the
equations of the flow motion if this term is neglected. In
order to reduce or avoid this error, the geometric conserva-
tion law needs to be enforced. In other words, the following
additional term should be added to the right-hand side of
the equations as a source term:

S ¼ Q
oJ�1

ot
þ nt

J

� �
n

þ gt

J

� �
g
þ ft

J

� �
f

" #
ð29Þ

To implement this option in the flow solver, the source
term is then linearized such that

Snþ1 ¼ Sn þ oS

oQ
DQnþ1 ð30Þ

As has been observed, the overall performance of this
numerical supplement is beneficial with very little extra
CPU-time cost.

3. Structural model of a three dimensional wing

3.1. Modal approach

The governing equation of a solid structure’s motion
can be written as

M
d2u

dt2
þ C

du

dt
þ Ku ¼ f ð31Þ

where M, C and K are the mass, damping, and stiffness
matrices of the solid structure respectively, u is the displace-
ment vector and f is the force exerted on the surface node
points of the solid, both can be expressed as

u ¼

u1

..

.

ui

..

.

uN

0
BBBBBBB@

1
CCCCCCCA
; f ¼

f1

..

.

f i

..

.

fN

0
BBBBBBB@

1
CCCCCCCA

where N is the total number of node points of the structural
model, ui and fi are vectors with three components in x, y, z

directions:

ui ¼
uix

uiy

uiz

0
B@

1
CA; f i ¼

f ix

f iy

f iz

0
B@

1
CA

fi is dynamic force exerted on the surface of the solid body.
In a modal approach, the modal decomposition of the
structure motion can be expressed as the following:

KU ¼MUK ð32Þ
or

K/j ¼ kjM/j ð33Þ

where K is the eigenvalue matrix, K = diag[k1, . . . ,kj,
. . . ,k3N], kj = xj

2, where xj is the natural frequency of jth
mode, and the mode shape matrix U = [/1, . . . ,/j, . . . ,
/3N].

Eq. (33) can be solved by using a finite element solver
(e.g. ANSYS) to obtain its finite number of mode shapes
/j. The first five mode shapes will be used in this paper
to calculate the displacement of the structure such that

uðtÞ ¼
X

j

ajðtÞ/j ¼ Ua ð34Þ

where a = [a1,a2,a3,a4,a5]T. Substituting Eq. (34) to Eq.
(31) yields

MU
d2a

dt2
þ CU

da

dt
þ KUa ¼ f ð35Þ

Multiplying Eq. (35) by UT and re-writing it as
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M̂
d2a

dt2
þ Ĉ

da

dt
þ K̂a ¼ P ð36Þ

where P = [P1,P2, . . . ,Pj, � � � ,PN]T, the modal force of jth
mode is P j ¼ /T

j f, the modal mass matrix is defined as

M̂ ¼ UTMU ¼ diagðm1; . . . ;mj; . . . ;m3N Þ ð37Þ

where mj is the modal mass of jth mode, and the modal
damping matrix is defined as

Ĉ ¼ UTCU ¼ diagðc1; . . . ; cj; . . . ; c3NÞ ð38Þ

where cj is the modal damping of jth mode, and the modal
stiffness matrix is defined as

K̂ ¼ UTKU ¼ diagðk1; . . . ; kj; . . . ; k3N Þ ð39Þ

where kj is the modal stiffness of jth mode. Eq. (36) implies

d2aj

dt2
þ 2fjxj

daj

dt
þ x2

j aj ¼
/T

j f

mj
ð40Þ

where fj is modal damping ratio. Eq. (40) is the modal
equation of structure motion, and is solved numerically
within each iteration. By carefully choosing reference
quantities, the normalized equation may be expressed as

d2aj

dt�2
þ 2fj

xj

xa

� �
daj

dt�
þ xj

xa

� �2

aj ¼ /�Tj f�V �
bs

L

� �2
�m
v�

ð41Þ

where the dimensionless quantities are denoted by an aster-
isk, xa is the natural frequency in pitch, bs is the streamwise
semichord measured at the wing’s root, L is the reference
length, �m is the measured wing-panel mass, v* is the volume
of a conical frustum having the streamwise root chord as
its lower base diameter, the streamwise tip chord as its
upper base diameter, and the panel span as its height,
V � ¼ U1

bsxa
ffiffi
�l
p , and U1 is the freestream velocity.

Then the equations are transformed to a state form and
expressed as

½M� ofSg
ot
þ ½K�fSg ¼ q ð42Þ

where

S ¼
aj

_aj

� �
; M ¼ ½I �; K ¼

0 �1
xj

xa

� �2

2f xj

xa

� � !
;

q ¼
0

/�Tj f�V � bs
L

� �2 �m
v�

 !

To couple the structural equations with the equations of
flow motion and solve them implicitly in each physical time
step, the above equations are discretized and integrated in a
manner consistent with Eq. (14) to yield

1

Ds
Iþ 1:5

Dt
Mþ K

� �
dSnþ1;mþ1

¼ �M
3Snþ1;m � 4Sn þ Sn�1

2Dt
� KSnþ1;m þ qnþ1;mþ1 ð43Þ

where n is the physical time level index while m stands for
the pseudo time index. The detailed coupling procedure be-
tween the fluid and structural systems is given in the follow-
ing section.

4. Fully coupled fluid-structural interaction procedure

To rigorously simulate fluid–structural interactions, the
equations of flow motion and structural response need to
be solved simultaneously within each iteration in a fully
coupled numerical model. The calculation based on fully
coupled iteration is CPU expensive, especially for three
dimensional applications. The modal approach can save
CPU time significantly by solving the modal displacement
equations, Eq. (40), instead of the original structural equa-
tions, Eq. (33), which is usually solved by using a finite ele-
ment method. In the modal approach, the structural mode
shapes can be pre-determined by using a separate finite ele-
ment structural solver. Once the several mode shapes of
interest are obtained, the physical displacements can be cal-
culated just by solving those simplified linear equations,
i.e., Eqs. (40) and (34). In present study, the first five mode
shapes provided in Ref. [16] are used to model the wing
structure. These pre-calculated mode shapes are obtained
on a fixed structural grid system and are transformed to
the CFD grid system by using a 3rd order polynomial
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pyfitting procedure. The procedure is only performed once
and then the mode shapes for the CFD grid system are
stored in the code throughout the simulation.

The procedure for the fully coupled fluid-structure inter-
action by the modal approach is described below:

(1) The flow solver provides dynamic forces on solid
surfaces.

(2) The fluid forces are integrated at each surface element
to obtain the forcing vector f.

(3) Eq. (40) is used to calculate the modal displacements
aj (j = 1,2,3,4,5) of the next pseudo time step.

(4) Eq. (34) is used to calculate the physical displacement
u of the next pseudo time step.

Y

X

Z

Fig. 3. The mesh on the ONERA M6 wing surface.
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Fig. 4. Pressure coefficients on the ONERA M6 wing surface at different cross sections.

Table 1
Free-stream condition for ONERA M6 wing

Mach number 0.8395
Static pressure (psia) 12.2913
Temperature (R) 447.0
Angle-of-attack (deg) 0.0
Reynolds number 19.7 · 106

Aspect ratio 3.8
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(5) The maximum residuals of both solutions of the flow
and the structural equations are checked. If the max-
imum residuals are greater than the prescribed con-
vergence criteria, go back to step (1) and proceed to
the next pseudo time. Otherwise the calculation of
the flow field and the structural displacement
within the physical time step is completed and the
next new physical time step starts. The procedure is
also illustrated in the flow chart given in Fig. 2.

5. Results and discussion

The result for the steady state transonic ONERA M6
wing is calculated first in order to validate the 3-D CFD
solver. Then a plate wing is calculated and the results are
compared with the solution of finite element solver.
Finally, the flutter boundary of an AGARD wing 445.6
is calculated.

5.1. Steady state transonic ONERA M6 wing

As a validation of the three dimensional solver for a
transonic wing, the steady state solution of the transonic

ONERA M6 wing is calculated. The freestream conditions
for this study are listed in Table 1 below.

X
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Z
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node 510

Fig. 5. Plate wing geometry.
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Fig. 6. Histories of the dynamic responses at node point 491.
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This case is calculated using an O-type grid with the
dimension of 144 (around wing) ·60 (normal to the wing)
·40 (spanwise). The far field boundary is located 15 chords
away from the chord center of the wing. The surface mesh
of the wing is depicted in Fig. 3.

The computed surface pressure distributions at various
cross sections are shown in Fig. 4 with the experimental
data given by Schmitt et al. [17]. The location of
z/b = 0.2 is near the root, and z/b = 0.99 is at wing tip.

Overall, very good agreement is obtained between the
computation and experiment for each cross-section except
at the section of z/b = 0.8, where the double-shock pattern
is not very well resolved.

5.2. Validation of structural solver

To validate the structural model used in the present
study, the dynamic responses of the flexible plate wing
shown in Fig. 5 are calculated and compared with the
results obtained by using the finite element solver ANSYS.
The purpose of the study is to find out how many mode
shapes are required for accurate representation of the
structural motion under dynamic force.

The plate wing has the same outline as the AGARD
wing 445.6, and its first mode natural vibration frequency
is nearly the same as the corresponding one of the AGARD
wing 445.6. The thickness of the plate is 0.300, the root
chord is 21.9600, the tip chord is 14.4900, and the spanwise
length is 3000. The plate wing consists of 80 elements and
861 node points on each side of the wing. The plate wing
is held fixed on the root.

A time-dependent force is exerted at node point 510,
which is located at the mid-point of the wing tip. The three
components of the force in the unit of pound are:

fx ¼ 0:5 sinð2pfetÞ; f y ¼ 0:3 sinð2pfetÞ;
f z ¼ 0:8 sinð2pfetÞ ð44Þ

where the exciting frequency fe is equal to 10 Hz. The mod-
al damping ratio fj = 0.01, the time step used is 0.0005 s.
The dynamic responses at several locations are recorded.
Fig. 6 shows the time histories of the responses at the node
point 491 which is located almost at the center of the plate
wing. The numerical predictions by the present structural
solver with the first five mode shapes agree excellently with
the results using ANSYS with he first five mode shapes and
the full model. The three results are virtually identical.

5.3. AGARD wing 445.6 flutter

The AGARD 445.6 wing is selected to demonstrate the
capability of the present solver for predicting the flutter
boundary. This wing has a quarter-chord sweep angle of
45�, an aspect ratio of 1.65, a taper ratio of 0.6576, and a
NACA65A004 airfoil section in the streamwise direction.
The weakened wing model (Model 3) listed in [16] is chosen
for this study. The geometry of the wing and its first six

mode shapes as well as the experimental flutter results are
also provided in the same report [16]. The wing structure
is modeled by its first five natural vibration modes in the
present computation.

The simulations start with the stationary rigid body
wing model. After the steady state flow field around the
wing is fully developed, the rigid body wing is switched
to the flexible wing model. As a small imposed perturba-
tion, the first mode displacement of the structural motion
is set into sinusoidal motion for one cycle with the maxi-
mum amplitude of 0.0005–0.001 and the first mode fre-
quency of the wing. Then the wing is allowed to deflect
in response to the dynamic force load. Within each physical
time step, the solution usually converges in 50–100
iterations.

In Figs. 7–9, the computed time histories of the general-
ized displacements of the AGARD wing 445.6 at
M1 = 0.96 are plotted for three different V*. In these fig-
ures, from V* = 0.28 to V* = 0.315, the plots correspond
to the computed damped, neutral, and diverging responses,
respectively. When the value of V* is smaller than the crit-
ical value on the flutter boundary, the amplitudes of all
modes decrease in time corresponding to the damped
response as shown in Fig. 7. Once the value of V* coincides
with or is close to the critical value, the neutral response
appears as shown in Fig. 8. When the value of V* is above
the neutral stability point, the amplitudes of first five
modes grow rapidly, a diverging response is hence reached
as shown in Fig. 9. At M1 = 0.96, the location of the pred-
icated flutter boundary is about 0.29 which is consistent
with the experimental value of 0.3076 provided by Ref.
[16].

For a given Mach number, several runs with different V*

are needed to determine the location of the flutter bound-
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Fig. 7. Time histories of the generalized displacements of first three modes
for M1 = 0.96 and V* = 0.28 – damped response.
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ary using the bisection method. When V* is varied in the
computations, the free-stream Reynolds number is changed
accordingly since U1 is varied. Strictly speaking, the free-
stream Reynolds number needs to be updated and the ini-
tial steady-state flow field with actual Reynolds number
should be re-generated for each run. In the present simula-
tion, the initial flow field and the Reynolds number remain
unchanged when V* is varied. The effect on the final solu-
tion due to a small variation in the free-stream Reynolds
number is negligible as examined in our numerical
experiments.

Figs. 10–12 show the wing surface pressure contours at
three different instants: the wing tip at uppermost, neutral
and lowermost positions respectively at M1 = 0.96 and
V* = 0.29.

The comparison of computed flutter boundary and
experimental data for AGARD Wing 445.6 is illustrated
in Fig. 13. Overall, the computed results are in good agree-
ment with the experimental data. The ‘‘sonic dip’’ near
Mach = 1.0 measured in the experiment is very well cap-
tured by the computation. The largest discrepancy between
computed and experimental results is at M1 = 1.171,

0.68

0.69

0.
70

0.
72

0.
74

0.
76

0.
78

0.7
0

0.
72

0.
74

0.
76

0.
78

0.68

0.80

0.
80

x

z

1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 10. Pressure distribution on the wing’s surface when the tip is located
at the uppermost position: M1 = 0.96 and V* = 0.29.
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Fig. 11. Pressure distribution on the wing’s surface when the tip is located
at the neutral position: M1 = 0.96 and V* = 0.29.
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Fig. 9. Time histories of the generalized displacements of first three modes
for M1 = 0.96 and V* = 0.315 – diverging response.
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which is previously noted by other researchers [2,18]. It
may be due to the inadequacy of the turbulent modeling
to capture the shock/wave boundary layer interaction at
high Mach numbers with stronger shock waves, or may
be due to the inaccurate measurement in the experiment
as suspected by some researchers.

6. Conclusion

A numerical methodology with fully coupled fluid-
structural interaction for predicating 3-D transonic wing

flutter has been developed. A dual-time step implicit
unfactored Gauss-Seidel iteration with the Roe scheme
are employed in the flow solver. A modal approach
structure solver is used to simulate the wing’s response.
An efficient mesh-deformation strategy based on an
algebraic method is developed and is shown to be accu-
rate and robust. The flow and structure solvers are
fully coupled via successive iterations within each physical
time step.

The accuracy of the modal approach has been verified
by using the finite element solver ANSYS. The results indi-
cate that the first five modes are sufficient to accurately
model the wing structure in the present study.

The computed flutter boundary of AGARD wing 445.6
for free stream Mach numbers ranging from 0.499 to 1.141
compares well with the experimental data except for
M1 = 1.171, where the flutter boundary is over-predicted.
The sonic dip is very well captured.
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