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ity, are also tested for these schemes. The
schemes of Roe, Edwards’ LDFSS(2), Liou’s
AUSMT and the modified Zha-Bilgen are able
to resolve the contact discontinuity accurately.
The Edwards LDFFS(2) scheme performs the
best based on the maximum allowable CFL
number and the profiles of shock and contact
discontinuities.
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Table 1: Maximum CFL Numbers for Sod 1D
Shock Tube

Scheme CFL Number
Edwards LDFSS(2) 0.999

Van Leer-Hanel 0.99
Steger-Warming 0.975

Van Leer 0.96

Roe 0.945

Zha, 0.92

Liou AUSMT 0.275

and Zha can resolve the contact surface accu-
rately as they are designed. The number of
mesh points used is 201. The results of those
schemes are at time level 0.02 and are virtually
indistinguishable even though they have differ-
ent maximum allowable CFL numbers. The
velocity is uniformly constant and the den-
sity discontinuity is monotone. The Edwards
LDFSS(2) scheme has far higher CFL number
than the other schemes with the value of 0.97
while Zha scheme has 0.5, Liou’s AUSM™* has
0.48, and Roe scheme has the CFL value of
0.32.

The schemes of Van Leer, Van Leer-Héanel
and Steger-Warming severely distort the pro-
files of the contact surfaces as shown in Fig.
14. The velocity profile are largely down
and up. The density jumps are also seriously
smeared.

Table 2 summarizes the maximum allowable
CFL number in the order of magnitude for
each scheme.

4 Conclusions

A numerical test case for the Euler equations is
presented to examine the performance of sev-

Table 2: Maximum CFL numbers of the
schemes resolving the contact surface
Scheme CFL Number
Edwards LDFSS(2) 0.97
Zha, 0.5
Liou AUSM* 0.48
Roe 0.32

eral upwind schemes for satisfying the entropy
condition. The first order upwind schemes of
Roe, Van Leer, Steger-Warming, Van Leer-
Héanel, Liou’s AUSM and AUSM™, Edwards’s
LDFSS and a modified Zha-Bilgen scheme are
tested. The numerical test indicates that the
Van Leer flux vector splitting scheme, Van
Leer-Hanel and AUSM-type schemes do not
satisfy the entropy condition and allow expan-
sion shocks at sonic point when first order ac-
curate discretizations are used. The schemes
of Roe, AUSM, AUSM™, and Van Leer-Hénel
are not stable due to the presence of the ex-
pansion shocks. Van Leer scheme is stable, but
yields a strong expansion shock. The flux vec-
tor splitting schemes of Steger-Warming and
the modified Zha-Bilgen scheme yield a small
jump at sonic point. The Edwards LDFSS(2)
scheme gives the smoothest results at sonic
point with a very small glitch when the coarse
grid is used. Refined mesh decreases the non-
smoothness of the Steger-Warming scheme,
the modified Zha-Bilgen scheme and the Ed-
wards LDFSS(2) scheme. When second or-
der MUSCL interpolations are used, all the
schemes obtain accurate results without any
expansion shock and non-smoothness at sonic
point. This may imply that using higher
than first order spatial accuracy may gener-
ally avoid expansion shocks.

Two shock tube problems, the Sod prob-
lem and a slowly moving contact discontinu-



expansion shock as long as higher than first or-
der MUSCL-type upwind differencing is used.

3.2 Test 2: Shock Tubes

The purpose here is to present the shock tube
tests for different upwind schemes so that we
can compare their performance. Two things
are of interest to compare: 1) the maximum al-
lowable CFL number to be used; 2) the quality
of shock and contact discontinuities captured.

For the discontinuity quality, it is desired
that they are crisp and monotone with no os-
cillation. For the maximum allowable CFL
number with explicit Euler time integration,
it is desired that the CFL number is as close
to the upper limit of 1.0 as possible. For the
1D linear wave equation with CFL=1 and 1st
order upwind scheme, the numerical dissipa-
tion and dispersion vanish [20]. For nonlinear
Euler equations, it is also true that the closer
the CFL to 1.0, the less the numerical dissipa-
tion, hence the sharper the discontinuity pro-
files captured.

3.2.1 Case 1: The Sod Problem

Fig. 6 to 12 are the computed tempera-
ture distributions compared with analytical re-
sults for the Sod problem [21] using 201 mesh
points. They are listed in the order of maxi-
mum allowable CFL number magnitude from
the largest to the smallest. The maximum al-
lowable CFL number is defined as the num-
ber, beyond which the numerical solution will
generate oscillation or become unstable. Ed-
wards’ LDFSS(2) scheme has the largest maxi-
mum allowable CFL number of 0.999 as shown
in Fig. 6. The shock profile is sharp and mono-
tone. The contact discontinuity is smeared,
but it may be the sharpest profile that a first
order scheme can achieve. The front of the ex-

pansion wave (located at about X/L=3.5) is
also smeared. Overall, the computed results
agree excellently with the analytical results.

Van Leer-Héanel scheme has the maximum
CFL =0.99 and the whole profile is quite sim-
ilar to the one of LDFSS(2) (see Fig. T).
The Steger-Warming scheme has the maxi-
mum CFL =0.975. The shock profile is quite
crisp, but the contact surface and the expan-
sion wave is severely smeared due to the large
dissipation (see Fig. 8). The Van Leer scheme
has the maximum CFL=0.96, but the profile
has a tail at the end of the expansion wave
(see Fig. 9). The tail becomes shorter with
decreasing CFL number and eventually disap-
pear at CFL=0.45 [5]. The Roe scheme has
the maximum CFL=0.945. Fig. 10 also shows
the shock profile has oscillations when the CFL
is greater than the maximum allowable CFL
number with the value of 0.99. Zha scheme has
the maximum allowable CFL=0.92. Among
all the schemes tested, Zha scheme resolves
the front of the expansion wave most accu-
rately (located at about X/L=3.5). A tail at
the end of the expansion will also appear for
Zha scheme if the CFL is greater than 0.92.
It is unexpected that the maximum allowable
CFL number of AUSM™ scheme is far below
0.9 with the value of 0.275. The whole profile
is largely smeared due to the low CFL number
used (see Fig. 12).

Table 1 summarizes the maximum allowable
CFL number in the order of magnitude for
each scheme.

3.2.2 Case 2: Slowly Moving Contact
Surface

This is the case used in [12, 17] with the ini-
tial condition [p,u,p]r = [0.125,0.112,1.0],
[p,u,plr = [10.0,0.112,1.0] . Fig. 13 shows
that the schemes of LDFSS(2), AUSM*, Roe



5.84cm,yy = 1.37em,z, = 5.78cm,y. =
4.11em, r. = 2.74em, h; = 3.52¢em.

In the computation, the geometry is normal-

ized by the half throat height hy = 1.37cm.

3.1.2 Numerical Results

For the subsonic boundary conditions at the
entrance, the velocity is extrapolated from the
inner domain and the other variables are deter-
mined by the total temperature (300K°) and
total pressure (1013kPa). For supersonic exit
boundary conditions, all the variables are ex-
trapolated from inside of the nozzle. The an-
alytical solution was used as the initial flow
field. The computation proceeded using a
global time step in a time accurate fashion.

Fig. 2 is the comparison of the analyt-
ical and computed Mach number distribu-
tions with 201 mesh points using the schemes
of Roe, Van Leer-Hanel, Liou’s AUSM and
AUSMT before these computations diverged.
The schemes shown in Fig.2 were either not
stable in time or diverged for mesh refinement.
The analytical solution is smooth through-
out and reaches the sonic speed at the throat
(the minimum area of the nozzle, located at
X/hs = 4.22). Tt is seen that all these schemes
generate expansion shocks at the nozzle throat
location. The expansion shock of the Roe
scheme had a large amplitude and was con-
verged to machine zero with 201 mesh points
and CFL=0.95. When a refined mesh with
401 points was used, the amplitude of the ex-
pansion shock generated by the Roe scheme
largely oscillated in time and the calculation
eventually diverged. The schemes of Van Leer-
Hanel, Liou’s AUSM and AUSM* were not
stable even for 201 mesh points with CFL
number lower than 0.1. The amplitude of the
expansion shock generated by Van Leer-Hanel,
Liou’s AUSM and AUSM* schemes grew in

time and the computation diverged soon after
the results reached the state shown in Fig. 2 .

Fig. 3 is the
tions with 201 mesh points computed by the
schemes of Van Leer, Steger-Warming, the
modified Zha-Bilgen scheme suggested in sec-
tion 2.6 and Edwards’ LDFSS(2) scheme. All
the results were converged to machine zero
with CFL=0.95. It is seen that Van Leer
scheme generates a strong expansion shock
at the throat location. The derivatives of
the modified Zha-Bilgen and Steger-Warming
schemes are not continuous and there are small
jumps at the sonic points as shown in the
throat region. Edwards’ LDFSS(2) scheme
agrees the best with the analytical results with
the least jump.

Mach number distribu-

All the schemes in Fig. 3 produce results
closer to the analytical one when the refined
mesh with 401 points is used, as shown in
Fig. 4. The amplitude of the expansion shock
generated by the Van Leer scheme is also de-
creased with the refined mesh, but remains
very large.

Van Leer indicated in [18] that the first
order piece wise uniform value may not be
a good representation of the solution near a
sonic point for the schemes which do not sat-
isfy the entropy conditions. It prevents the
true gradient being computed at the sonic bor-
dering zone and shows up as a transonic ex-
pansion shock. For a second order scheme,
the expansion shock disappears or its ampli-
tude reduces to O[(Az3)]( for Burgers’ equa-
tion). Fig. 5 is the Mach number distribu-
tions for all the schemes using the second order
MUSCL-type interpolation. It shows that all
the schemes generate the solutions which are
smooth and virtually identical to the analyti-
cal solution. The expansion shocks indeed dis-
appear as analyzed by Van Leer[18]. This im-
plies that it may be generally safe to avoid an



My =2 Mp=1F 3.1 Test 1: Entropy condition

+ The test case is a simple quasi-1D transonic
YLrR = 5[1 + sgn(ML,r)] flow in a converging-diverging nozzle. The cor-
rect solution should be a smooth flow from

Pr.r = —maz(0,1—int(|Mr r|) subsonic to supersonic with no shock. How-

B (pa®) g ever, for an upwind scheme which does not sat-

¢ = (pa?), isfy the entropy condition, an expansion shock

may be produced. Since the purpose of this

MT = le paper is not to cure the weakness of the up-

2 *ar+ar wind schemes tested, the remedies [18, 15] to

M- — MY +agr/¢ consider the source terms and generalize those
1= M3 ap +ar, schemes are not explored in this paper.

M = BrétM; + Bré™ M3
3.1.1 Geometry

The geometry is one of a series of 2D

5t — ~(1 + sgnll, l(ML + Mg)] converging-diverging nozzles designed and
2 tested at NASA Langley Research Center[19],

1 namely Nozzle A2 as sketched in Fig. 1. The

e = u geometry is formed by a plane upstream and

H downstream of the throat region with the slope

angle of # and [ respectively. In the throat

region, it has a circular-arc surface for tran-

FI% - szl‘ + Drpr (23) sitgion. The geometry is symmetric about the
central axis plane and only the upper half ge-

ometry is shown in the sketch (Fig. 1). The

Df,R _ O‘f,R(l +Brr) — BL,RPLi,R formulations describing the geometry are given

below:

1
Pip= 7Mrr+ 1)*(2F Mz Rr)

0 y=tan(@)z + h;, for 0<az<L; (24)

P = p
0

y:_\/rg_(x_xc)z‘i‘yca fOT LlS:BSLZ
. . 25
3 Results and Discussion (25)

All of the following results were computed us- y =tan(8)(z — z¢) + y, for Lz <z < L3
ing first order accuracy unless specially indi- (26)

cated. where 6 = —22.33°,3 = 121° L, =
4.74cm, Ly = 5.84cm, Lz = 11.56¢m, z; =



where F is defined as in eq. (1),

0
pa

(17)

XI5

Q is defined as in eq.(1)

(18)

1
a% = §(CLL —I—CLR)

MLIUL/CL%,MRIUR/(L% (19)
The interface speed of sound is essential for
the scheme to resolve contact discontinuities.

For supersonic flow, it switches to fully one
side flux as the Van Leer scheme. At the
sonic point, the pressure splitting does not
have a continuous derivative. If the switch
Mach number My and Mg are simply deter-
mined as eq.(19), the computation is not able
to drive the residual to machine zero. How-
ever, if the interface speed of sound, ay, to de-
termine the switch Mach number is computed
by the procedure of AUSM™ scheme, the resid-
ual can be reduced to machine zero with no
difficulty. The same phenomenon also occurs
to the Steger-Warming scheme. The machine
zero herein is defined as the L2 Norm residual
reduced by at least 12 orders of magnitude.
This scheme has the simplest form among all
the schemes tested.

2.7 The Roe FDS Scheme [1]

Roe’s FDS scheme has a single formulation for
both subsonic and supersonic flow :

1 1.
Fipr = 5(FL +Fr) - S]A[(Qr — Q1)
(20)

where |A| = T|A|T™!,

1 1 1
T = U—a u U+ a
h — ua %uz h+ ua
[u—al 0 0
and |A| = 0 |4 0
0 0 |u+al

The tilde “in eq. (20) means that all the
elements of the matrix are evaluated by the
following Roe’s average [1]:,

\/PLUL + \/PRUR

U=
VPL + /PR
- vperhr 4+ \/prhr

VPL + /PR

i= (-1 )

2.8 Edwards LDFSS(2) scheme
[11, 12]

Edwards LDFSS(2) scheme follows the similar
methodology of AUSM family scheme, but has
different splitting techniques.

Fip =F +F,

2

(21)

F¢ = a%[PLC‘i'f‘E + prC™FE] (22)

= O

where

1
a% = —(aL —I—CLR)

2
Ct=af(1+Bc)M — BLM] — M;’

™ = 0‘1_{(1+BR)MR _BRMjg —|—M;



2.4 The Steger-Warming FVS
Scheme[16]

The Steger-Warmimg FVS scheme is also writ-
ten as:
F 1 =Ff +Fg (12)

For subsonic flow, 0 < M < 1,

29u 4+ a — u
Ft+ = 2ﬁ 2(y — Du® + (u+a)’
¥ (y — D)u? + (uza) + (3—;1()5{114;;1)0
(13)
U —a
__p 2

F- =L (v—a) (14)

27\ @w-o? 4 B=D)(u=a)a®

2 2(y-1)

For subsonic flow with —1 < M < 0, the
formulation is not listed here but can be ob-
tained symmetrically. For supersonic flow, it
switches to fully one side flux as the Van Leer
scheme.

2.5 The Liou’s AUSM'* scheme

[10]
For |M| < 1:
1 1
Fijr= M%a%§(¢L+¢R)_§a%|M%|(¢R_¢L)
+(Pr + Pg) (15)
p 0
where 1 = ou |, Pr = Ptpr
ph 0
0
PR — 'P_PR 3

M Iu+(ML) +U‘(MR)

1
2

u* = ijz(M +1)2 4+ B(M? - 1)?

a1 = min(dr,ar)

X1

i = a*? /maz(a*, u|)

2(y—=1)*h
(y+1)

a* =

PT = le(M + 1)?(2F M) +aM(M? - 1)°

ML = uL/a%,MR = uR/a%

The « and 3 take the values suggested by
Liou [10] as & = % and 8 = %.

2.6 The Modified Zha-Bilgen
Scheme

The formulations of the Zha-Bilgen FVS
scheme for subsonic flow [5] is modified to cap-
ture contact discontinuities by using the idea
of an interface sound speed as suggested by
Wada and Liou [17] for the pressure splitting.
The formulation can be expressed as the fol-
lowing:

For |M| < 1:

1 1
Fipy = 5(F5 +Fr) - 5(Dn —D1) (10)



pu 0
pu? +p ,andH:% D
(e +p)u 0

In above equations, p is the density, u is the
velocity, p is the static pressure, e is the total
energy and S is the cross sectional area of the
1D duct. The following state equation is also
employed:

F =

(2)

where v is the specific heat ratio with the value

of 1.4.

p= (1= 1)fe — 5ou?)

The finite volume method with the explicit
Euler temporal integration is used to discretize
the governing equations. It yields the follow-
ing formulation at cell 4:

H;
AQ!T = At[-C(E; 1 — E;_1)+ ?]n (3)
where C' = 1/(AxzS;), n is the time level index.

The following sub-sections list all the for-
mulations of the different schemes used in this
paper for the purpose of reproducing the re-
sults.

2.2 The Van Leer FVS Scheme[2]
The general form of the Van Leer FVS scheme
is:

F 1 =Ff +Fg (4)

For subsonic flow, |[M| < 1,
f:l:
f:t y—1ut2a
m Y
f:t [(y=Du=+2a]?

2(y*-1)

Pt = (5)

where ff = tpa[l(|M|=£1)]% a is the speed
of sound and M is the Mach number.

For supersonic flow:

for Mp>1

Fiyr=F1 (6)

for Mg < -1

(7)

Fi-l—% = FR

My =up/ap, Mr = ur/agp
Leer-Hanel

2.3 The Van
Scheme[3]

The only difference between the Van Leer
scheme and the Van Leer-Hanel Scheme is the
energy term. The Van Leer-Héanel scheme can
be expressed as the following:

F 1 =Ff +Fg (8)

For subsonic flow, |[M| < 1,
f:l:
f:t y—1ut2a
m ¥
fah

Pt = (9)

where fniz is the same as defined in the Van

Leer scheme, and h is the enthalpy evaluated

as h = &2,
P

For supersonic flow:

Fi+%:FL fOT Mg >1

(10)

for Mg < -1

(11)

Fi-l—% = FR



(LDFVS) scheme in 1993 [5], which may re-
solve crisp shock profile, but the contact dis-
continuity would be smeared. The Zha-Bilgen
scheme has been modified to accurately resolve
contact discontinuities in this paper. Jame-
son suggested his Convective Upwind and
Split Pressure (CUSP) schemes and limiters
in 1993, which may capture crisp shock pro-
files, but not contact discontinuities [6, 7, 8].
Liou’s AUSM™ scheme (1995) [9, 10] further
improves the accuracy of AUSM scheme and is
able to resolve the exact shock and contact dis-
continuities and preserve the constant total en-
thalpy for steady state flows. Using the similar
concept to AUSM scheme, Edwards developed
his low diffusion flux splitting scheme(LDFSS)
in 1995 [11, 12]. The scheme shows the best
performance in the numerical tests of this pa-
per. The splitting formulations of Mach num-
ber and pressure from Van Leer’s flux vector
splitting scheme are employed in both AUSM
and LDFSS schemes.

While progress has been made to reduce
the dissipation of upwind schemes and im-
prove their capability to capture discontinu-
ities, relatively less attention has been paid
to answer an important question: “Does the
scheme satisfy the entropy condition?”. For
the FDS schemes such as the Roe’s scheme [1]
and Osher’s scheme [13], it is known that the
Roe scheme does not satisfy the entropy con-
dition and the Osher scheme does. For the
FVS schemes such as the Van Leer scheme
and Steger-Warming scheme, it is not known
whether they satisfy the entropy condition
[14, 15]. The extensive and successful appli-
cations of the FVS schemes in practical com-
putations lead to a general impression that
a FVS scheme, in particular, the Van Leer
scheme, is robust and violation of the en-
tropy condition may not be an issue.
ever, this can not be served as the answer to
the question raised above. For those recently

How-

developed schemes including AUSM family
schemes, LDFFS schemes, CUSP schemes,
and modified Zha-Bilgen scheme, etc, no defi-
nite answers are given regarding whether they
satisfy the entropy condition. In general, some
important numerical characteristics of the up-
wind schemes currently used are not fully un-
derstood.

The purposes of this paper are twofold: 1)
to give a numerical test case which may answer
the entropy condition question for some of the
upwind schemes. If an upwind scheme gen-
erates an expansion shock, the scheme would
be considered as violating the entropy condi-
tions. If an upwind scheme does not gener-
ate an expansion shock for the test case, it
is not conclusive that the scheme satisfies the
entropy condition; 2)to compare the perfor-
mance of those schemes to capture the shock
and contact discontinuities. The interest is to
compare the maximum allowable CFL num-
bers and the quality of the shock and contact
discontinuities resolved.

To explore the original properties of the up-
wind schemes, the work in this paper mainly
focuses on the 1D piece wise constant first or-
der discretization.

2 Numerical Procedure

2.1 Governing Equations
The governing equations are the quasi-1D Eu-
ler equations in Cartesian coordinates:

U +0,E-—H=0 (1)
p
pu
(4

where U = 5Q, Q = , E=SF,
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Abstract

The upwind schemes of Roe, Van Leer, Steger-
Warming, Van Leer-Héanel, Liou’s AUSM and
AUSMT, Edwards LDFSS and modified Zha-
Bilgen scheme are tested for their performance
at sonic point and discontinuities. A numeri-
cal test case is presented to examine the en-
tropy condition of upwind schemes at sonic
point for nonlinear Euler equations. The Zha-
Bilgen flux vector splitting scheme is modi-
fied to resolve contact discontinuities. It is
observed that the schemes of Van Leer, Van
Leer-Hanel, AUSM and AUSM™* schemes al-
low expansion shock at sonic point. Two shock
tube problems, the Sod problem and a slowly
moving contact discontinuity, are also tested
for these schemes. The focus for shock tube
tests is on comparing the maximum allowable
CFL number and the quality of the disconti-
nuities captured. Edwards’ LDFSS(2) scheme
gives the best results at both sonic point and
discontinuities.
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1 Introduction

To treat the flows with shock waves and con-
tact discontinuities, an accurate and efficient
upwind scheme used as a Riemann solver to
resolve the discontinuities is essential. Such
an upwind scheme is particularly important
when it is incorporated into a high order accu-
racy scheme such as an ENO scheme to simu-
late turbulence or acoustic fields with discon-
tinuities, where the nonphysical noise should
be minimized and the number of mesh points
would be limited due to the computing power.

To achieve the purpose of efficiency and
accuracy, efforts have been made to develop
an upwind scheme only using scalar dissi-
pation instead of using matrix dissipation
such as that of Roe’s flux difference splitting
(FDS) scheme [1]. The modification of Van
Leer’s Flux Vector Splitting(FVS) scheme[2]
by Hénel in 1987[3] began a series of new de-
velopments. The advection upstream splitting
method(AUSM ) suggested by Liou and Stef-
fen [4] in 1993 has achieved high accuracy and
maintained the computing work as low as that
of the Van Leer scheme. Zha and Bilgen sug-
gested a low diffusion Flux Vector Splitting



