
AIAA Paper 2005-0091

Implicit Application of Non-Reflective Boundary

Conditions for Navier-Stokes Equations in Generalized

Coordinates

Xiangying Chen∗ and Ge-Cheng Zha†

Dept. of Mechanical and Aerospace Engineering

University of Miami

Coral Gables, Florida 33124

xychen@apollo.eng.miami.edu,

zha@apollo.eng.miami.edu

Abstract

The non-reflective boundary conditions for Navier-Stokes equations originally suggested by
Poinsot and Lele[1] in Cartesian coordinates are extended to generalized coordinates. The
boundary conditions are implicitly coupled with the Navier-Stokes flow solver in the inner do-
main. The calculations are conducted for a subsonic vortex propagating flow and the steady
and unsteady transonic inlet-diffuser flows. The results indicate that the present method is
accurate and robust, and the non-reflective boundary conditions are essential for unsteady flow
calculations.

1 Introduction

The accuracy of unsteady flow calculations relies on accurate treatment of boundary conditions.
Due to the computer resource limit, usually only a limited computational domain is considered
for an unsteady flow calculation. This means that we have to “cut off” the domain that is not of
our primary interest. However, the cut boundaries may cause artificial wave reflections, which may
include both physical waves and numerical waves[1]. Such waves may bounce back and forth within
the computational domain and may seriously contaminate the solutions and produce misleading
results. This is particularly true for internal flows such as the flows in turbomachinery, in which the
computational domain usually is confined very near the solid objects. For example, previous studies
indicated that the different treatment of perturbation at upstream and downstream boundaries can
change the compressor blade stall inception pattern [2] [3].

The currently often used non-reflective boundary conditions for unsteady internal flows are based
on eigenvalue analysis of linearized Euler equations developed by Giles[4]. However, Giles’ method
may only apply to the inviscid solutions which require the far field flow to be uniform so that
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the propagation waves have the Fourier mode shapes. For viscous flows, the mean flow in the
downstream far field region may be non-uniform due to the airfoil or blade wakes, which means
that there will be no Fourier mode shapes. In addition, the inconsistency of the Navier-Stokes
governing equations for the inner domain and linearized Euler equations at far field boundary may
also cause numerical wave reflections.

The more rigorous treatment of non-reflective boundary conditions (NRBC) for Navier-Stokes
equations is the one suggested by Poinsot and Lele in 1992[1] for Direct Numerical Simulation
of turbulence. However, the NRBC given by Poinsot and Lele in [1] is only for the regular mesh
aliened with the coordinate axises in Cartesian coordinates. The explicit time marching scheme was
used in the calculation of Poinsot and Lele. For practical engineering applications, the body fitted
generalized coordinates are usually used. In 2000, Kim and Lee [5] made an effort to extend the
NRBC of Poinsot and Lele from the Cartesian coordinates to generalized coordinates. However, in
their derivation, a flaw was made by absorbing the eigenvector matrix into the partial derivatives,
which apply only if: 1) it is 1D equations; 2) the eigenvector matrix is constant in the flow field;
3) the partial differential equations satisfy Pfaff’s condition. For multidimensional Navier-Stokes
equations, all these three conditions are not satisfied[6, 7]. Hence, the wave amplitude vector
derived in [5] is erroneous.

The purpose of this paper is to extend the NRBC of Poinsot and Lele [1] from Cartesian coor-
dinates to generalized coordinates and apply it numerically for unsteady calculations in an implicit
time marching method. The numerical results indicate that the present methodology is robust and
accurate.

2 Governing Equations

The 3D compressible Reynolds-Averaged Navier-Stokes equations (RANS) with Favre mass average
are solved for the flow field in generalized coordinates, which can be expressed as

∂Q′

∂t
+
∂E′

∂ξ
+
∂F′

∂η
+
∂G′

∂ζ
=

1

Re

(

∂E′
v

∂ξ
+
∂F′

v

∂η
+
∂G′

v

∂ζ

)

(1)

where Re is the Reynolds number and

Q′ =
Q

J
(2)

E′ =
1

J
(ξxE+ ξyF+ ξzG) (3)

F′ =
1

J
(ηxE+ ηyF+ ηzG) (4)

G′ =
1

J
(ζxE+ ζyF+ ζzG) (5)

E′
v =

1

J
(ξxEv + ξyFv + ξzGv) (6)
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F′
v =

1

J
(ηxEv + ηyFv + ηzGv) (7)

G′
v =

1

J
(ζxEv + ζyFv + ζzGv) (8)

where the variable vector Q, and inviscid flux vectors E, F, and G are

Q =















ρ̄
ρ̄ũ
ρ̄ṽ
ρ̄w̃
ρ̄ẽ















, E =















ρ̄ũ
ρ̄ũũ+ p̃
ρ̄ũṽ
ρ̄ũw̃

(ρ̄ẽ+ p̃)ũ















, F =















ρ̄ṽ
ρ̄ũṽ

ρ̄ṽṽ + p̃
ρ̄w̃ṽ

(ρ̄ẽ+ p̃)ṽ















, G =















ρ̄w
ρ̄ũw̃
ρ̄ṽw̃

ρ̄w̃w̃ + p̃
(ρ̄ẽ+ p̃)w̃















,

and the viscous flux vectors are given by

Ev =















0
τ̄xx − ρu′′u′′
τ̄xy − ρu′′v′′
τ̄xz − ρu′′w′′

Qx















, Fv =















0
τ̄yx − ρv′′u′′
τ̄yy − ρv′′v′′
τ̄yz − ρv′′w′′

Qy















, Gv =















0
τ̄zx − ρw′′u′′

τ̄zy − ρw′′v′′

τ̄zz − ρw′′w′′

Qz















In above equations, ρ is the density, u, v, and w are the Cartesian velocity components in x, y
and z directions, p is the static pressure, and e is the total energy per unit mass. The overbar
denotes the Reynolds-averaged quantity, tilde and double-prime denote the Favre mean and Favre
fluctuating part of the turbulent motion respectively. All the flow variables in above equations are
normalized by using the freestream quantities and the reference length L.

Let subscript 1, 2 and 3 represent the coordinates, x, y, and z, and use Einstein summation
convention, the non-dimensional shear-stress and Qx, Qy, Qz terms can be expressed in tensor form
as

τ̄ij = −
2

3
µ̃
∂ũk
∂xk

δij + µ̃(
∂ũi
∂xj

+
∂ũj
∂xi

) (9)

Qi = ũj(τ̄ij − ρu′′i u′′j )− (q̄i + CpρT ′′u′′i ) (10)

where the mean molecular heat flux is

q̄i = −
µ̃

(γ − 1)Pr

∂a2

∂xi
(11)

The molecular viscosity µ̃ = µ̃(T̃ ) is determined by Sutherland law, and a =
√
γRT∞ is the

speed of sound. The equation of state closes the system,

ρ̄ẽ =
p̃

(γ − 1)
+

1

2
ρ̄(ũ2 + ṽ2 + w̃2) + k (12)
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where γ is the ratio of specific heats, k is the Favre mass-averaged turbulence kinetic energy. The
turbulent shear stresses and heat flux appeared in above equations are calculated by Baldwin-
Lomax model[8]. The viscosity is composed of µ + µt, where µ is the molecular viscosity and µt is
the turbulent viscosity determined by Baldwin Lomax model. For a laminar flow, the µt is set to
be zero. For simplicity, the overbars and tildes are dropped in later analysis.

2.1 Time Marching Scheme

For the inner flow field domain, the Navier-Stokes equations, Equation (1), are solved implicitly
using the control volume method. For steady state solutions, the original Navier-Stokes equations,
Equation (1), are solved. For unsteady flow calculations, the dual time stepping method suggested
by Jameson is used[9] with a pseudo temporal term ∂Q

∂τ
added to the governing equations. This term

vanishes at the end of each physical time step and has no influence on the accuracy of the solution.
However, instead of using the explicit scheme as in [9], an implicit pseudo time marching scheme
using line Gauss-Seidel iteration is employed to achieve high CPU efficiency. For unsteady time
accurate computations, the temporal term is discretized implicitly using a three point, backward
differencing as the following

∂Q

∂t
=

3Qn+1 − 4Qn +Qn−1

2∆t
(13)

where n is the time level index. The pseudo temporal term is discretized with first order Euler
scheme. Let m stand for the iteration index within a physical time step, the semi-discretized
governing equation (eq.(1)) can be expressed as

[

(

1

∆τ
+

1.5

∆t

)

I −
(

∂R

∂Q

)n+1,m
]

δQn+1,m+1 = Rn+1,m − 3Qn+1,m − 4Qn +Qn−1

2∆t
(14)

where the ∆τ is the pseudo time step, R is the net flux going through the control volume,

R = − 1

V

∫

s
[(E′ − 1

Re
E′
v)i+ (F′ − 1

Re
F′
v)j+ (G′ − 1

Re
G′
v)k]·ds (15)

where V is the volume of the control volume, s is the control volume surface area vector. Equation
(14) is solved using the unfactored line Gauss-Seidel iteration. The method can reach very large
pseudo time step since no factorization error is introduced.

To resolve the shock wave and wall boundary layer with high accuracy, the Roe scheme [10] is
employed to evaluate the inviscid fluxes with the 3rd order MUSCL type differencing[11]. Central
differencing is used for viscous fluxes calculation.

3 Characteristic Form of the Navier-Stokes Equations

The characteristic form of the Navier-Stokes equations in the generalized coordinates will be solved
as the non-reflective boundary conditions. To describe the derivation process, the ξ direction will
be taken as the example. Other two directions can follow the same procedure. Based on the
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strategy of Thompson[7] and Poinsot and Lele[1], the Navier-Stokes equations are expressed first
using primitive variables as the following:

M
∂q

∂t
+A ·M∂q

∂ξ
+B ·M∂q

∂η
+C ·M∂q

∂ζ
= Rv (16)

where A,B,C are the Jacobian matrix

A =
∂E′

∂Q′ ,B =
∂F′

∂Q′ ,C =
∂G′

∂Q′ (17)

where Rv is the viscous vector on the right hand side of the Navier-Stokes equations, ( Equation
(1) ), q is the primitive variable vector:

q =
1

J















ρ
u
v
w
p















(18)

M is the Jacobian matrix between the conservative variables and primitive variables

M =
∂Q′

∂q
=















1 0 0 0 0
u ρ 0 0 0
v 0 ρ 0 0
w 0 0 ρ 0
Φ

γ−1 ρu ρv ρw 1

γ−1















(19)

where Φ = γ−1
2

(u2 + v2 + w2).

Equation (16) can be further expressed as:

∂q

∂t
+ a

∂q

∂ξ
+ b

∂q

∂η
+ c

∂q

∂ζ
=M−1Rv (20)

Where

a =M−1AM,b =M−1BM, c =M−1CM (21)

M−1 =

















1 0 0 0 0
−u
ρ

1

ρ
0 0 0

−v
ρ

0 1

ρ
0 0

−w
ρ

0 0 1

ρ
0

Φ −u(γ − 1) −v(γ − 1) −w(γ − 1) γ − 1

















(22)

Matrix a,b, c have the same eigenvalues as Jacobian matrix A,B,C. In ξ direction,
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a =

















U ρξx ρξy ρξz 0

0 U 0 0 ξx
ρ

0 0 U 0
ξy
ρ

0 0 0 U ξz
ρ

0 γpξx γpξy γpξz U

















(23)

where U = ξxu+ ξyv + ξzw. Matrix a can also be expressed as

a = PΛP−1 (24)

where Λ is the eigenvalue matrix, P is eigenvector matrix of a, and P−1 is the inverse of P. They
are given as the following

Λ =















U 0 0 0 0
0 U 0 0 0
0 0 U 0 0
0 0 0 U + C 0
0 0 0 0 U − C















(25)

P =















ξ̃x ξ̃y ξ̃z α α

0 −ξ̃z ξ̃y ξ̃x/
√
2 −ξ̃x/

√
2

ξ̃z 0 −ξ̃x ξ̃y/
√
2 −ξ̃y/

√
2

−ξ̃y ξ̃x 0 ξ̃z/
√
2 −ξ̃z/

√
2

0 0 0 αc2 αc2















(26)

P−1 =

















ξ̃x 0 ξ̃z −ξ̃y −ξ̃x/c2
ξ̃y −ξ̃z 0 ξ̃x −ξ̃y/c2
ξ̃z ξ̃y −ξ̃x 0 −ξ̃z/c2
0 ξ̃x/

√
2 ξ̃y/

√
2 ξ̃z/

√
2 β

0 −ξ̃x/
√
2 −ξ̃y/

√
2 −ξ̃z/

√
2 β

















(27)

where C = cβξ, βξ =
√

ξx
2 + ξy

2 + ξz
2, ξ̃x = ξx/βξ, ξ̃y = ξy/βξ, and ξ̃z = ξz/βξ, α = ρ/

√
2c, and

β = 1/
√
2ρc, c is the speed of sound determined by c =

√
γRT .

The Navier-Stokes equation, Equation (20) then can be expressed as:

∂q

∂t
+PΛP−1∂q

∂ξ
+ b

∂q

∂η
+ c

∂q

∂ζ
=M−1Rv (28)

or

P−1∂q

∂t
+ΛP−1∂q

∂ξ
+P−1b

∂q

∂η
+P−1c

∂q

∂ζ
= P−1M−1Rv (29)

This is the characteristic form of the Navier-Stokes equations in ξ direction. Define vector L as:
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L = ΛP−1∂q

∂ξ
(30)

The Navier-Stokes equations (Equation (29)) are then expressed as:

P−1∂q

∂t
+ L+P−1b

∂q

∂η
+P−1c

∂q

∂ζ
= P−1M−1Rv (31)

Vector L is given as the following:

L =















L1

L2

L3

L4

L5















=























U [ξ̃x
∂
∂ξ
( ρ
J
) + ξ̃z

∂
∂ξ
( v
J
)− ξ̃y ∂∂ξ (wJ )−

ξ̃x
c2

∂
∂ξ
( p
J
)]

U [ξ̃y
∂
∂ξ
( ρ
J
)− ξ̃z ∂∂ξ (uJ ) + ξ̃x

∂
∂ξ
(w
J
)− ξ̃y

c2
∂
∂ξ
( p
J
)]

U [ξ̃z
∂
∂ξ
( ρ
J
) + ξ̃y

∂
∂ξ
(u
J
)− ξ̃x ∂

∂ξ
( v
J
)− ξ̃z

c2
∂
∂ξ
( p
J
)]

(U + C)[ ξ̃x√
2

∂
∂ξ
(u
J
) +

ξ̃y√
2

∂
∂ξ
( v
J
) + ξ̃z√

2

∂
∂ξ
(w
J
) + β ∂

∂ξ
( p
J
)]

(U − C)[− ξ̃x√
2

∂
∂ξ
(u
J
)− ξ̃y√

2

∂
∂ξ
( v
J
)− ξ̃z√

2

∂
∂ξ
(w
J
) + β ∂

∂ξ
( p
J
)]























(32)

The vector L is the amplitude of the characteristic waves. If assume ξ̃x = 1, ξ̃y = ξ̃z = 0,
Equation (32) returns to the corresponding formulations in x-direction of the Cartesian coordinates.

As pointed out in [6, 7], for multi-dimensional Navier-Stokes flow equations, Equation (29), the
matrix P−1 can not be absorbed into the partial derivatives because the flow equations does not
satisfy Pfaff’s condition and the matrix can not be treated as constants. In other words, it is
incorrect to express the characteristic form of the Navier-Stokes equations in the form given in [5]
(page 2042) as:

∂R

∂t
+Λ

∂R

∂ξ
+ = P−1S∗

v (33)

The local one-dimensional wave amplitude defined in [5] following Equation (33) is therefore
also erroneous.

To be consistent with the governing equations of the flow field within inner domain and facilitate
programming, it is desirable to express Equation (31) in terms of conservative variables. Multiply
Equation (31) by matrix M ·P, the characteristic Navier-Stokes equations expressed in terms of
conservative variables in ξ direction is:

∂Q′

∂t
+MPL+

∂F′

∂η
+
∂G′

∂ζ
=

1

Re

(

∂E′
v

∂ξ
+
∂F′

v

∂η
+
∂G′

v

∂ζ

)

(34)

Define vector d as

d = PL =















d1

d2

d3

d4

d5















=





















ξ̃xL1 + ξ̃yL2 + ξ̃zL3 + α(L4 + L5)
−ξ̃zL2 + ξ̃yL3 + ξ̃x√

2
(L4 − L5)

ξ̃zL1 − ξ̃xL3 + ξ̃y√
2
(L4 − L5)

−ξ̃yL1 − ξ̃xL2 + ξ̃z√
2
(L4 − L5)

αc2(L4 + L5)





















(35)
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Define vector D as:

D =Md =















d1

ud1 + ρd2

vd1 + ρd3

wd1 + ρd4
1

2
(u2 + v2 + w2)d1 + ρud2 + ρvd3 + ρwd4 + 1

γ−1d5















(36)

Finally the Navier-Stokes equations in generalized coordinates and their characteristic form in
ξ direction can be expressed as:

∂Q′

∂t
+D +

∂F′

∂η
+
∂G′

∂ζ
=

1

Re

(

∂E′
v

∂ξ
+
∂F′

v

∂η
+
∂G′

v

∂ζ

)

(37)

Equation (37) will be solved as the non-reflective boundary conditions in ξ direction. The Navier-
Stokes equations in generalized coordinates and their characteristic forms in η and ζ directions can
be obtained straightforwardly following the symmetric rule.

By neglecting the transverse and viscous terms in Equation (37), the Local One-Dimensional
Inviscid (LODI) relation [1] in generalized coordinates is

∂Q′

∂t
+D = 0 (38)

The LODI relation may be used to estimate the amplitudes of the characteristic waves at bound-
aries. Numerical results show that the LODI relations works well for the boundaries where the flow
fields are smooth or uniform, and hence the transverse and viscous terms are small or negligible.
For those boundaries where the transverse and viscous terms are significant, the LODI relations
may perform poorly.

4 Non-Reflective Boundary Conditions

Following the strategy suggested by Poinsot and Lele[1], the characteristic boundary conditions
for Navier-Stokes equations can be implemented based on Equation (37). In the present study,
Equation (37) is solved implicitly in a fully coupled way with the Navier-Stokes equations in inner
domain. For unsteady solutions, the dual time stepping method is used. The semi-discretized
equation for Equation (37) is:

[

(

1

∆τ
+

1.5

∆t

)

I −
(

∂Rbc
∂Q

)n+1,m

+

(

∂D
∂Q

)n+1,m
]

δQn+1,m+1

= Rn+1,mbc −Dn+1,m − 3Qn+1,m − 4Qn +Qn−1

2∆t
(39)

where

Rbc = −
1

V

∫

s
[(− 1

Re
E′
v)i+ (F′ − 1

Re
F′
v)j+ (G′ − 1

Re
G′
v)k]·ds (40)
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Compare eq.(40) and (15), it is noticed that in Rbc, there is no E′ flux, which is replaced by
vector D. D is treated as a source term.

Before proceeding to the further analysis, some notations need to be defined. For the finite
volume method used in the present study, a row of phantom cells are used outside of the bound-
ary. The boundary conditions are enforced by assigning values to the primitive variables at those
phantom cells. All the variables marked by the subscript ‘o’ are for phantom cells. The variables
at the interior cells adjacent to a boundary are denoted by subscript ‘i’.

Equation (37) provides the set of governing equations for NRBC, but the way to implement the
NRBC is not unique. The following is the method used in this study and should not be considered
as the only feasible method.

4.1 Supersonic outflow boundary conditions

For supersonic flow at exit, all the eigenvalues in Equation (25) are positive and the disturbance
propagates from inner domain to outside. The wave amplitude vector Equation (32) is evaluated
using one side upwind differencing. For supersonic flow at exit, using simple extrapolation may
not generate physical wave reflection, but may still generate numerical wave reflection[1]. Solving
Equation (39) would achieve a more accurate non-reflective boundary conditions for the supersonic
flow. For supersonic flow, the exit boundary conditions, ρo, ρuo, ρvo, ρwo and ρeo are completely
determined by solving the Navier-Stokes equations in the characteristic form.

To evaluate the derivatives in vector L, either the first order or second order upwind differencing
may be used. For the present study, all the partial derivatives in vector L are calculated by first
order upwind differencing.

4.2 Subsonic outflow boundary conditions

For subsonic flow at exit, the eigenvalue U −C is negative and the disturbance propagates into the
domain from outside. L1 to L4 can be still calculated by one-side upwind differencing. However,
L5 corresponding to the eigenvalue of U −C must be treated differently. The conventional method
to provide a well posed boundary condition is to impose p = p∞ at the outflow boundary. This
treatment however will create acoustic wave reflections, which may be diffused and eventually
disappear when the solution is converged to a steady state solution. For unsteady flows, the wave
reflection may contaminate the flow solutions. To avoid wave reflections, the following soft boundary
condition was suggested by Rudy-Strikwerda[12] and used by Poinsot-Lele[1].

L5 = K(p− pe) (41)

where K is a constant and is determined by K = σ(1−M2)c/L as given by Poinsot and Lele in [1]
for Cartesian coordinates. The corresponding form used in the generalized coordinates is

K = σ|1−M2|/(
√
2JρL) (42)

where M is the maximum Mach number in the flow field. L is the characteristic length of the
domain. c is the speed of sound. The preferred range for constant σ is 0.2-0.5. The absolute value
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of 1 −M2 is to ensure the term is positive because the maximum Mach number can be greater
than 1 in a transonic flow field.

If L5 = 0, it switches to the ‘perfect’ non-reflective boundary condition. However, this boundary
condition is not well posed and will not lead the solution to the one matching the exit pressure
p∞. Equation (41) assumes that the constant exit pressure p∞ is imposed at infinity. There exists
reflection if p 6= p∞, which is needed for the well posedness of the numerical solution. For the
unsteady problems, Equation (41) will make the mean value of the pressure at the exit very close
to p∞. However, the pressure at the individual control volume may not be exactly equal to p∞
even though the value of L5 can be very small. In this sense, Equation (41) may be considered as
“almost non-reflective boundary conditions”.

The complete boundary conditions used at the exit are the pressure at infinity for Equation (41)
and three zero gradient viscous conditions:

∂

∂ξ
(ξxτxy + ξyτyy + ξzτzy) = 0 (43)

∂

∂ξ
(ξxτxz + ξyτyz + ξzτzz) = 0 (44)

∂

∂ξ
(ξxQx + ξyQy + ξzQz) = 0 (45)

The amplitudes of the outgoing characteristic waves, L1, L2, L3, and L4 are computed from
the interior domain. All the conservative variables at phantom points are obtained by solving the
characteristic N-S equations, Equation (37). All the transverse and viscous terms in Equation (37)
can be evaluated in the same way as the inner domain control volumes. The Roe’s Riemann solver
is also used for computing fluxes F′ and G′, central differencing is used for fluxes E′

v, F
′
v, F

′
v.

This strategy makes maximum use of the existing code and minimizes the programming work to
implement the boundary conditions.

4.3 Subsonic inflow boundary conditions

At ξ = 1 boundary, four characteristic waves, L1, L2, L3, and L4 are entering the domain while L5
is leaving the domain. For 3-D open field flow cases, four physical boundary conditions are needed,
i.e. uo, vo, wo and ρo are set to be constant. Other primitive variables are specified according to the
freestream condition. The total energy ρeo is obtained by solving the energy equation in Equation
(37). The outgoing wave L5 can be estimated by using interior variables. The rest of the waves are
evaluated by using the LODI relations, Equation (38). L1 - L4 can be expressed as

L1 = −ξ̃x
ρ√
2c

(L4 + L5), L2 = −ξ̃y
ρ√
2c

(L4 + L5), L3 = −ξ̃z
ρ√
2c

(L4 + L5), L4 = L5 (46)

4.4 Adiabatic wall boundary conditions

At a 3-D adiabatic wall (η = constant), the no-slip condition is enforced by extrapolating the
velocity between the phantom and interior cells, uo = −ui, vo = −vi, and wo = −wi. One more
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physical boundary condition to be imposed on the wall is the adiabatic condition, ∂T
∂η

= 0. From
the adiabatic condition, the ρo can be expressed as the following

po
ρo

=
pi
ρi

(47)

The total energy ρeo is determined by solving the energy equation in Equation (37). Then
using Equation (47) and Equation (12), ρo and po can be solved. Cross a η boundary, vector L is
expressed as the following:

L =















L1

L2

L3

L4

L5















=



















V [η̃x
∂
∂η
( ρ
J
) + η̃z

∂
∂η
( v
J
)− η̃y ∂

∂η
(w
J
)− η̃x

c2
∂
∂η
( p
J
)]

V [η̃y
∂
∂η
( ρ
J
)− η̃z ∂∂η (uJ ) + η̃x

∂
∂η
(w
J
)− η̃y

c2
∂
∂η
( p
J
)]

V [η̃z
∂
∂η
( ρ
J
) + η̃y

∂
∂η
(u
J
)− η̃x ∂

∂η
( v
J
)− η̃z

c2
∂
∂η
( p
J
)]

(V + C)[ η̃x√
2

∂
∂η
(u
J
) +

η̃y√
2

∂
∂η
( v
J
) + η̃z√

2

∂
∂η
(w
J
) + β ∂

∂η
( p
J
)]

(V − C)[− η̃x√
2

∂
∂η
(u
J
)− η̃y√

2

∂
∂η
( v
J
)− η̃z√

2

∂
∂η
(w
J
) + β ∂

∂η
( p
J
)]



















(48)

where V = ηxu + ηyv + ηzw and C = cβη, βη =
√

ηx2 + ηy2 + ηz2. It can be seen from Equation

(48), the characteristic waves L1 - L3 vanish since V = 0 at wall surface. At lower wall (η = 1),
the outgoing characteristic wave L5 is computed from the interior domain. The incoming wave L4
is estimated by using LODI relations. By solving 2nd - 4th equations in Equation (38), it yields L4
= L5. At upper wall (maximum η), the L4 becomes the outgoing wave, and it can be computed
from the interior domain. L5 is the incoming wave which is evaluated by L5 = L4.

5 Results and Discussion

5.1 A Vortex propagating through a outflow boundary

The first test case is a subsonic vortex propagating flow in an open flow field. The computed domain
is rectangular with an inflow and outflow boundary at the inlet and exit and far filed boundaries
on the upper and lower border. In [1], a supersonic vortex propagating flow is chosen. It is
known that a subsonic vortex propagating flow is more difficult to deal with since the disturbance
propagates both upstream and downstream. To test present method under more general conditions,
the subsonic vortex propagating flow is selected for this study.

The computational mesh has a length of 2 units in streamwise direction which is 30 degrees
to the x direction, while the width is 4 units in transverse direction. The mesh dimensions are
60×100. The laminar Navier-Stokes equations is solved for this flow with M = 0.8 and Reynolds
Number of 300.

A vorticity is initially located at the center of the domain when dimensionless time t∗ = 0, and
convected downstream toward the outflow boundary. The velocity flow field is initially specified as

(

u
v

)

=

(

u∞
v∞

)

+

(

∂ψ
∂y

−∂ψ
∂x

)

(49)

ψ = Cvexp

(

−x
2 + y2

2R2c

)

(50)
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where u∞ and v∞ are the velocity components of the incoming flow, Cv is the coefficient that
determines the vortex strength of the velocity field, and Rc is the vortex radius. The total energy
field is initialized as

ρe = ρe∞ + ρ
C2e
R2c

exp

(

−x
2 + y2

2R2c

)

(51)

where Ce is the coefficient that determines the vortex strength of the total energy field. Equations
(49) and (51) are adopted from those used by Poinsot and Lele[1]. The coefficients Cv and Ce, and
radius Rc are defined by

Cv/(cL) = −0.0005, Ce/(cL) = −0.02, Rc = 0.15 (52)

The inflow and outflow boundary conditions used in this case are described in previous section.
The far field upper and lower boundaries are treated as perfect non-reflective outflow boundary.

The flow field at inflow boundary is initially set to be uniform. The direction of the incoming
flow is parallel to the constant η lines. Obviously, at the inflow boundary, the transverse flux and
viscous terms are very small. The error caused by LODI relations is very small and negligible.

To compare the present NRBC with the conventional boundary conditions (CBC) for subsonic
flow simulations, the first computation is carried out with CBC, which include: at inflow boundary,
uo, vo, ρo are given such that the streamwise velocity component is uniformly distributed and
the transverse velocity component is equal to zero. The pressure is extrapolated from the interior
domain, po = pi. Then the total energy ρeo can be computed from the equation of state. At outflow
boundary, all the primitive variables are extrapolated from the inner domain except the pressure
is set to be constant.

The same case with the same initial flow condition is then calculated using the NRBC developed
in present study. Figures 1 and 2 show the computed density contours at four instants by CBC
and NRBC respectively. It can been seen from figure 1 that the flow field is seriously distorted
by the reflective waves when the vortex propagates through the exit boundary. But there is no
noticeable distortion in the solution calculated using NRBC as shown in figure 2. The vortex passes
through the outflow NRBC very smoothly. Figures 3 and 4 show the relative streamwise velocity
component, (uτ − uτ∞)/uτ∞ contours at the same four instants by CBC and NRBC respectively.
The same phenomenon is observed.

5.2 Inlet-Diffuser Flow

To test the non-reflective boundary conditions for realistic engineering problems. A transonic inlet-
diffuser with shock wave boundary layer interaction [13] is computed to demonstrate the advantage
of the NRBC.

5.2.1 Steady State Solutions

The steady state solution of the inlet diffuser is calculated first to verify that the NRBC is consistent
with the steady state flow. The Reynolds Number is 3.45×105 and the inlet Mach number is 0.46.
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The baseline geometry of the inlet diffuser has a height of H = 4.4cm at the throat and a total
length of 12.6H. This case is run using a H-type grid with the dimensions of 110×56. The turbulence
shear stress and heat flux are calculated by the Baldwin-Lomax model[8]. The experimental data
provided by Bogar et al.[13] are available for validation.

As discussed before, for 3-D case, at ξ = 1 inlet boundary, waves L1 - L4 enter the boundary and
L5 leaves. Hence four physical boundary conditions are required at this boundary. The amplitude
of the outgoing characteristic wave L5 can be estimated from the interior points.

According to [1], the inlet and wall NRBC are not as critical as the exit NRBC. For this transonic
inlet-diffuser case, at the upstream of the shock, the flow is supersonic. Hence the perturbation
will not propagate upstream. The NRBC at inlet therefore may not be necessary. The CBC at
inlet is expected to work well. However, at the downstream of the shock, the flow is subsonic. The
oscillation of the shock will generate strong reflecting waves at the exit boundary. Therefore exit
NRBC is essential for this case. For this reason, the inflow NRBC is not used in this study. Instead,
the conventional inlet BC with given total pressure Pt, total temperature Tt, and flow angle is used.
The NRBC outflow and wall conditions used are those described in previous section.

The Mach number contours are shown in Figure 5. Corresponding to different back pressure
in the experiment, there are two cases of the flow, one has a weak shock (poutlet/pt=0.82) and
the other has a strong shock (poutlet/pt=0.72). Fig. 6 and 7 are the computed static pressure
distribution compared with the experiment along the top and bottom wall for the weak shock case.
Good agreement is obtained between the computation and experiment.

Figures 8 and 9 are the static pressure distribution compared with the experimental data along
the top and bottom walls for the strong shock case. Due to the strong shock interacting with
the turbulent boundary layer, there is a separation downstream of the shock, which is not well
predicted. There may be two reasons for the problem: 1) the flow is unsteady due to the separation
and hence the steady state solution can not capture the separation bubble length correctly; 2) the
Baldwin-Lomax turbulence model is inadequate to handle the non-equilibrium separated flow.

Different σ values from 0.1 to 0.35 are tested and the results show that the steady state results
are insensitive to the σ value. The conventional boundary conditions are also applied to the same
case, and achieve almost the same results as the one computed by the NRBC. This is because that,
for the steady state solutions, the reflective waves are eventually diffused when the steady state
solution is converged.

5.2.2 Unsteady Solutions

The steady state calculation indicates that the NRBC is not essential since the artificial reflective
waves are diffused when the solution is converged. However, it is very different when the unsteady
flow is calculated. For the inlet-diffuser case with a strong shock wave, the conventional boundary
conditions generates strong reflective waves and makes the shock wave severely oscillating inside
the duct. The oscillation is far greater than the experimental results. When the NRBC is applied,
the shock oscillation is dramatically reduced.

Figures 10 and 11 are the time averaged pressure distributions compared with the experimental
data. Due to the large shock oscillation, the shock location is smeared out for the conventional
boundary conditions. Hence the shock location, strength and the pressure downstream of the shock
are poorly predicted. When the NRBC is applied, the reduced shock oscillation yields sharp shock
profile and much better agreement of the shock location with the experiment.
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To match the experimental geometry for the measured shock oscillation frequency, the compu-
tational domain is then extend to a total length of 21.3H. The simulation is carried out with CBC
and NRBC respectively using the same flow conditions. The computed power spectra for the static
pressure at the exit location (x/H = 14.218) are shown in Figure 12. The experimental spectrum
of the shock oscillation measured for this case only has one dominant frequency between 210 -
225 (Hz)[13]. From the upper spectrum computed by CBC in the figure, it can be seen that the
dominant frequencies are 250 (Hz) and 400 (Hz). Obviously the dominant frequency is associated
with the reflecting waves. The lower spectrum computed by NRBC shows that there is only one
significantly dominant frequency (about 250 Hz) which is very closed to the experimental result.
Also it is evident that the noise level created by NRBC is much lower than the one created by
CBC. This shows that the NRBC is essential to accurately predict unsteady aerodynamic forcing.

6 Conclusion

The non-reflective boundary conditions of Poinsot and Lele[1] for 3D Navier-Stokes equations are
extended to the generalized coordinates in this paper. The NRBC is applied numerically in an
implicit time marching method. The governing equations for inner domain and NRBC are solved
simultaneously in a fully couple manner.

For the unsteady subsonic vortex propagating flow, the conventional boundary conditions im-
posing the exit pressure generates serious wave reflection and the flow field is distorted, whereas,
the NRBC developed in this paper generates clean results with no wave reflection and solution
distortion.

For the transonic inlet-diffuser, the NRBC is not necessary for steady state solutions since the
reflective waves are diffused when the solutions are converged. However, for unsteady flows, the
NRBC is essential. The conventional boundary conditions generate strong reflective waves due
to the shock/boundary layer interaction, which makes the shock oscillating motion far greater
than the experiment. When the NRBC is applied, the shock oscillation is dramatically reduced
and the computed time averaged pressure distributions and frequency agree much better with the
experiment than CBC.
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t* = 1.0t* = 0.5

t* = 1.5 t* = 2.0

Figure 1: Density contours at four instants for a vortex leaving the domain using imposed exit
static pressure boundary conditions.

t* = 1.0t* = 0.5
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t* = 2.0t* = 1.5

Figure 2: Density contours at four instants for a vortex leaving the domain using NRBC exit
boundary conditions.

t* = 0.5 t* = 1.0

t* = 2.0t* = 1.5

Figure 3: (uτ −uτ∞)/uτ∞ contours at four instants for a vortex leaving the domain using imposed
exit static pressure boundary conditions.
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t* = 1.0t* = 0.5

t* = 1.5 t* = 2.0

Figure 4: (uτ − uτ∞)/uτ∞ contours at three instants for a vortex leaving the domain using NRBC
exit boundary conditions.

Figure 5: Mach number contours of the inlet diffuser.
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Figure 6: Steady state pressure distribution along the top wall for poutlet/pt = 0.82.
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Figure 7: Steady state pressure distribution along the bottom wall for poutlet/pt = 0.82.
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Figure 8: Steady state pressure distribution along the top wall for poutlet/pt = 0.72.
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Figure 9: Steady state static pressure distribution along the bottom wall for poutlet/pt = 0.72.
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Figure 10: Time averaged unsteady pressure distribution along the top wall for poutlet/pt = 0.72.
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Figure 11: Time averaged unsteady pressure distribution along the bottom wall for poutlet/pt = 0.72.
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Figure 12: Power spectral density for the static pressure fluctuations at x/H = 14.218, poutlet/pt =
0.72.

22


