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Abstract

The E-CUSP upwind scheme recently developed by Zha and Hu is extended to moving grid
system and is applied to calculate the flow induced vibration based on a fully coupled fluid-
structure interaction methodology. The scheme is used to calculate the flow induced vibration
of an elastically mounted cylinder, forced pitching airfoil, and an elastically mounted airfoil. The
numerical results are compared with experimental data and have demonstrated the accuracy,
efficiency and robustness of the new E-CUSP scheme for solving flow induced vibration problems
with moving mesh systems.

1 Introduction

Flow induced structural vibration is one of the most critical technical problems affecting the relia-
bility, cost and safety of aircraft. Due to the very complicated non-linear flow-structure interaction
and multidisciplinary (fluid and structure) requirements, there is a lack of high accuracy and ef-
ficiency computational tools to study the basic physics and to predict the structural failure. The
problems exist in both the airframe and aircraft engine systems.

There are generally two types of methods to calculate the fluid-structure interaction problems:
the fluid and structure governing equations are loosely coupled or fully coupled. The loosely
coupled model means that the structural response lags behind the flow field solution. This kind of
methods may be limited to first-order accuracy in time regardless of the temporal accuracy of the
individual solvers[1]. The fully coupled model is that the flow field and structure always respond
simultaneously by exchanging the aerodynamic forcing and structural displacement within each
iteration. Obviously, only the fully coupled model is rigorous in physical sense.

Recently, efforts have been made to develop the predicting capability for flow induced vibration.
Bendiksen et al.[2] pioneered the research by using an explicit CFD code coupled with a structural
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integrator based on the convolution integral to obtain the flutter boundary for a NACA 64A010 air-
foil. The loosely coupled model between the fluid and structural solvers include the work conducted
by Guruswamy[3], Lee-Rausch et al.[4], Smith[5], Vermeersch et al.[6], Darracq, et. al [7], Blom
et al.[8], Prananta et al.[9], and Bohbot et al.[10]. Alonso and Jameson developed a model which
is close to the fully coupled method with the structural displacement updated every several fluid
solver iterations[11]. The implicit Runge-Kutta method with multigrid acceleration is employed for
the flow solver in Alonso’s work[11][12]. In 1997-98, Morton and Melville et al. developed a implicit
fully coupled fluid structural interaction model, which used the Beam-Warming implicit scheme for
the flow solver coupled with modal structural solver [13][14][1]. In 2000, Liu et al. developed a
fully coupled method using Jameson’s explicit scheme with multigrid method and a finite element
structural model [15].

Chen et al. recently have developed a fully coupled methodology for calculating the flow induced
vibrations[16]. In their method, the Roe scheme is extended to moving grid system and is used with
the finite-volume method. Unlike the central differencing used in[13][14][1], no artificial dissipation
needs to be adjusted. The structure response is sensitive to different artificial dissipation. The
unsteady solutions march in time by using a dual-time stepping implicit unfactored Gauss-Seidel
iteration. The unsteady Navier-Stokes equations and the linear structural equations are fully cou-
pled implicitly via successive iteration with pseudo time stepping. The moving/deforming mesh
strategy is based on two mesh zones, a fine mesh zone surrounding the solid body without mesh
deformation, and a coarse mesh zone surrounding the fine mesh zone and deforming with the solid
object motion. This mesh deformation strategy can maintain the orthogonality of the mesh near
the wall and save CPU time spent to re-mesh the grid near the solid wall.

However, the calculation based on fully coupled fluid-structure interaction is CPU expensive
due to the intensive iterations between the fluid system and structure system. Hence, a numerical
scheme that is CPU efficient and accurate is very desirable. The Roe scheme used in [16] for the
flow filed calculation consumes a lot of CPU time due to its matrix operation for the numerical
dissipation. This paper is to employ a more CPU efficient scheme by avoiding the matrix operation
to calculate the flow induced vibrations.

Recently, there are many efforts to develop efficient Riemann solvers using scalar dissipation
instead of the matrix dissipation. For the scalar dissipation Riemann solver schemes, there are
generally two types: H-CUSP schemes and E-CUSP schemes[17, 18, 19]. The abbreviation CUSP
stands for “convective upwind and split pressure” named by Jameson[17, 18, 19]. The H-CUSP
schemes have the total enthalpy from the energy equation in their convective vector, while the
E-CUSP schemes use the total energy in the convective vector. The Liou’s AUSM family schemes,
Van Leer-Hänel scheme[20], and Edwards’s LDFSS schemes[21, 22] belong to the H-CUSP group.

The H-CUSP schemes may have the advantage to better conserve the total enthalpy for steady
state flows. However, from the characteristic theory point of view, the H-CUSP schemes are not
fully consistent with the disturbance propagation directions, which may affect the stability and
robustness of the schemes[23]. A H-CUSP scheme may have more inconsistence when it is extended
to moving grid system. It will leave the pressure term multiplied by the grid velocity in the energy
flux that can not be contained in the total enthalpy and the term has to be treated as a part of
the pressure term. From characteristics point of view, it is not obvious how to treat this term in a
consistent manner.

Recently, Zha and Hu suggested an efficient E-CUSP scheme which is consistent with the charac-
teristic directions[23]. The scheme has low diffusion and is able to capture crisp shock profiles and

2



exact contact discontinuities. The scheme is shown to be accurate, robust and efficient since it only
uses the scalar dissipation. In addition, it is fairly straightforward to extend the E-CUSP scheme
of Zha-Hu to moving grid system. This is because the grid velocity belongs to the convective terms
in the E-CUSP schemes. The pressure term is determined by the weighted average based on the
wave eigenvalues from downstream and upstream. The Zha-Hu scheme is more efficient than the
Roe scheme without matrix operation. For a 2D nozzle calculation, the CPU time to evaluate the
flux using Zha-Hu scheme is only about 1/4 of that needed by the Roe scheme[23].

This paper is to apply the newly suggested E-CUSP scheme of Zha-Hu to a fully coupled fluid-
structure interaction to achieve high efficiency and accuracy. The above methodology is proved to
be robust, accurate and efficient by the computed flow induced vibration of an elastically mounted
cylinder, a transonic pitching airfoil, and the elastically mounted NACA 64A010 airfoil.

2 CFD Aerodynamic Model

2.1 Flow Governing Equations

The governing equations for the flow field computation are the Reynolds-Averaged Navier-Stokes
equations (RANS) with Favre mass average which can be transformed to the generalized coordinates
and expressed as:

∂Q′

∂t
+

∂E′

∂ξ
+

∂F′

∂η
+

∂G′

∂ζ
=

1

Re

(

∂E′
v

∂ξ
+

∂F′
v

∂η
+

∂G′
v

∂ζ

)

(1)

where Re is Reynolds number and

Q′ =
Q

J
(2)

E′ =
1

J
(ξtQ+ ξxE+ ξyF+ ξzG) =

1

J
(ξtQ+E′′) (3)

F′ =
1

J
(ηtQ+ ηxE+ ηyF+ ηzG) =

1

J
(ηtQ+ F′′) (4)

G′ =
1

J
(ζtQ+ ζxE+ ζyF+ ζzG) =

1

J
(ζtQ+G′′) (5)

E′
v =

1

J
(ξxEv + ξyFv + ξzGv) (6)

F′
v =

1

J
(ηxEv + ηyFv + ηzGv) (7)

G′
v =

1

J
(ζxEv + ζyFv + ζzGv) (8)

where the variable vector Q, and inviscid flux vectors E, F, and G are
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Q =















ρ̄
ρ̄ũ
ρ̄ṽ
ρ̄w̃
ρ̄ẽ















, E =















ρ̄ũ
ρ̄ũũ+ p̃

ρ̄ũṽ
ρ̄ũw̃

(ρ̄ẽ+ p̃)ũ















, F =















ρ̄ṽ
ρ̄ũṽ

ρ̄ṽṽ + p̃
ρ̄w̃ṽ

(ρ̄ẽ+ p̃)ṽ















, G =















ρ̄w
ρ̄ũw̃
ρ̄ṽw̃

ρ̄w̃w̃ + p̃
(ρ̄ẽ+ p̃)w̃















,

The E′′, F′′, and G′′ are the inviscid fluxes at the stationary grid system and are expressed as:

E′′ = ξxE+ ξyF+ ξzG,

F′′ = ηxE+ ηyF+ ηzG,

G′′ = ζxE+ ζyF+ ζzG,

and the viscous flux vectors are given by

Ev =















0
τ̄xx − ρu′′u′′

τ̄xy − ρu′′v′′

τ̄xz − ρu′′w′′

Qx















, Fv =















0
τ̄yx − ρv′′u′′

τ̄yy − ρv′′v′′

τ̄yz − ρv′′w′′

Qy















, Gv =















0
τ̄zx − ρw′′u′′

τ̄zy − ρw′′v′′

τ̄zz − ρw′′w′′

Qz















In above equations, ρ is the density, u, v, and w are the Cartesian velocity components in x, y
and z directions, p is the static pressure, and e is the total energy per unit mass. The overbar
denotes the Reynolds-averaged quantity, tilde and double-prime denote the Favre mean and Favre
fluctuating part of the turbulent motion respectively. All the flow variables in above equations are
non-dimensionlized by using the freestream quantities and reference length L.

Let subscript 1, 2 and 3 represent the coordinates, x, y, and z, and use Einstein summation
convention, the shear-stress and Qx, Qy, Qz terms in non-dimensional forms can be expressed in
tensor form as

τ̄ij = −
2

3
µ̃
∂ũk

∂xk
δij + µ̃(

∂ũi

∂xj
+

∂ũj

∂xi
) (9)

Qi = ũj(τ̄ij − ρu′′i u
′′
j )− (q̄i + CpρT ′′u′′i ) (10)

where the mean molecular heat flux is

q̄i = −
µ̃

(γ − 1)Pr

∂a2

∂xi
(11)

The molecular viscosity µ̃ = µ̃(T̃ ) is determined by Sutherland law, and a =
√
γRT∞ is the

speed of sound. The equation of state closes the system,

ρ̄ẽ =
p̃

(γ − 1)
+

1

2
ρ̄(ũ2 + ṽ2 + w̃2) + k (12)
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where γ is the ratio of specific heats, k is the Favre mass-averaged turbulence kinetic energy. The
turbulent shear stresses and heat flux appeared in above equations are calculated by Baldwin-Lomax
model[24]. An additional equation is solved to enforce the geometry conservation law[16].

2.2 Time Marching Scheme

The time dependent governing equation (1) is solved using the control volume method with the
concept of dual time stepping suggested by Jameson[25]. A pseudo temporal term ∂Q

∂τ
is added

to the governing equation (1). This term vanishes at the end of each physical time step, and has
no influence on the accuracy of the solution. However, instead of using the explicit scheme as in
[25], an implicit pseudo time marching scheme using Gauss-Seidel iteration is employed to achieve
high CPU efficiency. For unsteady time accurate computations, the temporal term is discretized
implicitly using a three point, backward differencing as the following

∂Q

∂t
=

3Qn+1 − 4Qn +Qn−1

2∆t
(13)

where n is the time level index. The pseudo temporal term is discretized with first order Euler
scheme. Let m stand for the iteration index within a physical time step, the semi-discretized
governing equation (1) can be expressed as

[(
1

∆τ
+

1.5

∆t
)I − (

∂R

∂Q
)n+1,m]δQn+1,m+1 = Rn+1,m − 3Qn+1,m − 4Qn +Qn−1

2∆t
(14)

where the ∆τ is the pseudo time step, R is the net flux going through the control volume,

R = − 1

V

∫

s
[(F − Fv)i+ (G−Gv)j+ (H −Hv)k]·ds (15)

where V is the volume of the control volume, s is the control volume surface area vector. Equation
(14) is solved using the unfactored Gauss-Seidel iteration. The method is unconditionally stable
and can reach very large pseudo time step since no factorization error is introduced.

2.3 The Zha-Hu E-CUSP Scheme in Moving Mesh System

To clearly describe the formulations, the vectors of Q and E′ in Equation (3) are given below:

Q =















ρ̄
ρ̄ũ
ρ̄ṽ
ρ̄w̃
ρ̄ẽ















, E′ =
1

J
Ê, Ê =















ρ̄Ũ

ρ̄ũŨ + ξxp̃

ρ̄ṽŨ + ξyp̃

ρ̄w̃Ũ + ξz p̃

ρ̄ẽŨ + p̃Ū















(16)

Ũ is the contravariant velocity in ξ direction defined as the following:

Ũ = ξt + ξxũ+ ξyṽ + ξzw̃ (17)

5



We define Ū as:

Ū = Ũ − ξt (18)

The Jacobian matrix Â is defined as

Â =
∂Ê

∂Q
= T̂Λ̂T̂−1 (19)

where T̂ is the right eigenvector matrix of Â, and Λ̂ is the eigenvalue matrix of Â on moving grid
system with the eigenvalues of

(Ũ + C̃, Ũ − C̃, Ũ , Ũ , Ũ) (20)

where C̃ is the speed of sound corresponding to the contravariant velocity:

C̃ = c
√

ξ2x + ξ2y + ξ2z (21)

where c =
√
γRT is the physical speed of sound.

Due to the homogeneous relationship between Q and Ê, the following formulation applies:

Ê = ÂQ = T̂Λ̂T̂−1Q (22)

In an E-CUSP scheme, the eigenvalue matrix is split as the following:

Λ̂ =















Ũ − C̃ 0 0 0 0

0 Ũ 0 0 0

0 0 Ũ 0 0

0 0 0 Ũ 0

0 0 0 0 Ũ + C̃















= Ũ [I] +















−C̃ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 C̃















(23)

Obviously the grid velocity term ξt[I] due to the moving mesh is naturally included in the
convective term, Ũ , as given in eq.(17). Therefore, Equation (22) becomes

Ê = [Ũ [I] +















−C̃ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 C̃















]Q = Êc + Êp =















ρ̄Ũ

ρ̄ũŨ

ρ̄ṽŨ

ρ̄w̃Ũ

ρ̄ẽŨ















+















0
ξxp̃
ξyp̃
ξz p̃
p̃Ū















(24)

where Êc and Êp are namely convective and pressure fluxes. As shown above, the way of breaking
up the total flux into convective and pressure fluxes in E-CUSP type is purely based on the analysis
of characteristics of the system. As shown in eq. (24), the convective flux has the upwind charac-
teristic Ũ and it is only associated with the convective velocity. The pressure flux has a downwind
and upwind characteristic and it totally depends on the propagation of acoustic wave.
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The E-CUSP scheme of Zha-Hu[23] can be extended to moving mesh system as the following:

Ê 1

2

=
1

2
[(ρ̄Ũ) 1

2

(qc
L + qc

R)− |ρ̄Ũ | 1
2

(qc
R − qc

L)] +















0
P+p̃ξx
P+p̃ξy
P+p̃ξz

1

2
p̃(Ū + C̄ 1

2

)















L

+















0
P−p̃ξx
P−p̃ξy
P−p̃ξz

1

2
p̃(Ū − C̄ 1

2

)















R

(25)

where

(ρ̄Ũ) 1

2

= (ρ̄LŨ
+
L + ρ̄RŨ−

R ) (26)

qc =















1
ũ
ṽ
w̃
ẽ















(27)

C̃ 1

2

=
1

2
(C̃L + C̃R) (28)

M̃L =
ŨL

C̃ 1

2

, M̃R =
ŨR

C̃ 1

2

(29)

Ũ+
L = C̃ 1

2

{M̃L + |M̃L|
2

+ αL[
1

4
(M̃L + 1)2 − M̃L + |M̃L|

2
]} (30)

Ũ−
R = C̃ 1

2

{M̃R − |M̃R|
2

+ αR[−
1

4
(M̃R − 1)2 − M̃R − |M̃R|

2
]} (31)

αL =
2(p̃/ρ̄)L

(p̃/ρ̄)L + (p̃/ρ̄)R
, αR =

2(p̃/ρ̄)R
(p̃/ρ̄)L + (p̃/ρ̄)R

(32)

P± =
1

4
(M̃ ± 1)2(2∓ M̃)± αM̃(M̃2 − 1)2, α =

3

16
(33)

C̄ = C̃ − ξt (34)

C̄ 1

2

=
1

2
(C̄L + C̄R) (35)

Please note that, in the energy equation of the pressure splitting, Ū and C̄ are used instead of
Ũ and C̃. C̄ is constructed taking into account the effect of the grid speed so that the flux will
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transit from subsonic to supersonic smoothly. When ξt = 0, eq. (25) naturally returns to the one
for stationary grid.

For supersonic flow,

when ŨL ≥ C̃, Ê 1

2

= ÊL

when ŨR ≤ −C̃, Ê 1

2

= ÊR

2.4 Boundary Conditions

The flow field is solved subject to appropriate boundary conditions described as bellow:

(1) Upstream boundary condition: The outer boundary is divided into upstream and downstream
boundaries according to whether the direction of its segment is toward or backward to the ambient
flow direction. On upstream boundary, it is assumed that the streamwise velocity u is uniform,
and transverse velocity v = 0. Other primitive variables are specified according to the freestream
condition except the pressure which is extrapolated from interior.

(2) Downstream boundary condition: All the flow quantities are extrapolated from interior
except the pressure which is set to be its freestream value.

(3) Solid wall boundary condition: At moving boundary surface, the no-slip condition is enforced
by extrapolating the velocity between the phantom and interior cells,

u0 = 2ẋb − u1, v0 = 2ẏb − v1 (36)

where u0 and v0 denote the velocity at phantom cell, u1 and v1 denote the velocity at the 1st
interior cell close to the boundary, and ub and vb are the velocity on the moving boundary.

The other two conditions to be imposed on the solid wall are the adiabatic wall condition and
the inviscid normal momentum equation[13] as follows,

∂T

∂η
= 0,

∂p

∂η
= −

(

ρ

η2x + η2y

)

(ηxẍb + ηyÿb) (37)

3 Structural Models

3.1 Elastically Mounted Cylinder

For the computations of the vortex-induced oscillating cylinder, which is elastically supported as
shown in Figure 1 so that it oscillates only in the direction aligned with or normal to the incoming
flow, the structural dynamic equations which governs the motion of the cylinder are:

mẍ+ Cxẋ+Kxx = D (38)

mÿ + Cyẏ +Kyy = L (39)

These equations are solved implicitly together with the equations of flow motion, Equation (14)
in a fully coupled manner. In Equation (38), ẍ, ẋ, and x represent the dimensionless horizontal
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acceleration, velocity and displacement of the moving object respectively. Similarly, ÿ, ẏ, and y in
Equation (39) represent their corresponding ones in vertical direction. m, L, and D are the mass,
lift, and drag per unit span respectively, Cx and Cy are the damping coefficients in horizontal and
vertical directions, Kx and Ky are the spring constants in horizontal and vertical directions. In
present study, this ’self-excited oscillators’ is assumed to have the same response in both direction,
i.e. Cx = Cy and Kx = Ky.

If the normalization procedure is applied to Equations (38) and (39) by using the same reference
scales of those used for the equations of flow motion, the following nondimensional equations are
obtained

ẍ+ 2ζ

(

2

ū

)

ẋ+

(

2

ū

)2

x =
2

µsπ
Cd (40)

ÿ + 2ζ

(

2

ū

)

ẏ +

(

2

ū

)2

y =
2

µsπ
Cl (41)

where ζ is the nondimensional structural damping coefficient calculated by ζ =
Cx,y

2
√

mKx,y

, ū is the

reduced velocity defined by ū = U∞
bω

, b is radius of the cylinder, ω =
√

Kx,y/m, the mass ratio,

µs =
m

πρ∞b2
, Cd and Cl are the drag and lift force coefficients respectively. Then the equations are

transformed to a matrix form and expressed by

[M]
∂{S}
∂t

+ [K]{S} = q (42)

where

S =











x
ẋ
y
ẏ











, M = [I], K =















0 −1 0 0
(

2

ū

)2

2ζ
(

2

ū

)

0 0

0 0 0 −1
0 0

(

2

ū

)2

2ζ
(

2

ū

)















, q =











0
2

µsπ
Cd

0
2

µsπ
Cl











.

To couple the structural equations with the equations of flow motion and solve them implicitly
in each physical time step, above equations are discretized and integrated in a manner consistent
with Equation (14) to yield

(

1

∆τ
I+

1.5

∆t
M+K

)

δSn+1,m+1 = −M3Sn+1,m − 4Sn + Sn−1

2∆t
−KSn+1,m + qn+1,m+1 (43)

where n is the physical time level index while m stands for the pseudo time index. The detailed
coupling procedure between the fluid and structural systems is given in section 4.

3.2 Elastically Mounted Airfoil

Unlike the structural model of the vortex-induced oscillating cylinder, the system of the elastically
mounted airfoil is assumed to be undamped. The airfoil is allowed to move in pitch about a given
elastic axis and plunge vertically. The pitch axis is defined by a distance a, which is the multiple
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of the semi-chord length with the origin point located at the mid-chord position. If a is positive, it
means the axis is located downstream of the mid-chord, negative means being located upstream of
the mid-chord point.

A sketch of the elastically mounted airfoil is depicted in Figure 2. The motion of such an elastic
system can be described by using the following equations

mḧ+ Sαα̈+Khh = −L (44)

Sαḧ+ Iαα̈+Kαα = M (45)

where h and α are the plunging and pitching displacements respectively, m is the mass per unit
span, Sα is the static moment around the elastic axis, Iα is the rotational moment of inertia, Kh and
Kα are plunging and pitching spring constants respectively, L is the lift force and M is the moment
around the elastic axis. The equations of the structure motion (44) and (45) are normalized by
using semi-chord b as the length dimension, the uncoupled natural frequency in pitch ωα as the
time scale, and are expressed as

ḧ+ xαα̈+

(

ωh

ωα

)2

h = −U∗2

µπ
Cl (46)

xαḧ+ r2αα̈+ r2αα =
U∗2

µπ
Cm (47)

where xα is the static unbalance, ωh is the uncoupled natural frequency in plunge, r2α is the squared
radius of gyration, U ∗ is the reduced velocity defined as U∞

ωαb
, Cl and Cm are the lift and moment

coefficient respectively. Since the time scale used in Equations (46) and (47) is different from the
one used in the governing equations of flow, the structural dimensionless time t∗s needs to be re-
scaled and keep its consistency with the entire system during the computation, i.e., t∗s = ωαL

U∞
t∗f ,

where t∗f is the dimensionless time for flow and the L is the length scale. Finally the equations are
cast into the form of Equations (42) and (43), and the corresponding matrices are

S =











h

ḣ
α
α̇











, M =











1 0 0 0
0 1 0 xα

0 0 1 0
0 xα 0 r2α











, K =













0 −1 0 0
(

ωh
ωα

)2

0 0 0

0 0 0 −1
0 0 r2α 0













, q =













0

−U∗2

µπ
Cl

0
U∗2

µπ
Cm













.

4 Flow-Structure Coupling

Within a physical time step, the structural motion and the flow field are unknown and are solved
iteratively between the fluid and structural systems in a fully couple manner. The following is the
procedure:

(1) The variables at new time level n+1 of the flow and structural equations initially are set to
the values of time level n.

(2) Calculate the aerodynamic forces including lift, drag, and torque exerting on the solid body
of the object.
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(3) Determine the position of the moving object subject to the aerodynamic forces by solving
the structural equations.

(4) Re-generate the mesh and calculate the grid velocity at each node point according to the
updated structural position.

(5) Calculate the flow field by solving the equations of flow motion for the updated mesh and
structural position.

(6) Check the maximum residuals for both solutions of the flow and the structural equations.
If the maximum residuals are greater than the prescribed convergence criteria, go back to step (2)
and proceed to the next pseudo time level m + 1, otherwise the flow field and the movement of
the moving object are determined and go back to step (1) to start the next new physical time step
n+ 1. The procedure can be also seen in the flow chart given in Figure 3.

5 Results and Discussion

Presented in this section are the numerical results of the vortex-induced oscillating cylinder, the
forced pitching NACA 64A010 airfoil, and the flow-induced vibration of a NACA 64A010 airfoil.

5.1 Elastically Mounted Cylinder

5.1.1 Stationary Cylinder

The flow past a stationary cylinder is used as an unsteady flow validation case. The fine mesh zone
mentioned in the previous section is shown in Figure 4. The baseline mesh dimensions are 120×80
in circumferential and radial directions. The far field boundary is located 20 diameters away from
the center of the cylinder. The Reynolds number based on the free-stream condition and cylinder
diameter is, Re = 500. The laminar Navier-Stokes equations will be solved due to the low Reynolds
number.

The computed drag and lift coefficients are shown in Figure 5. As shown in the figure, the lift
oscillates at certain frequency in terms of the Strouhal number. The drag coefficient oscillates with
twice that frequency. The mesh refinement study and computed Strouhal number, drag, lift and
moment coefficients are listed in Table 1

Table 1: Results of Mesh Refinement Study and comparison with the experiments
Mesh Dimension StCd StCl StCm Cl Cd

120×80 0.4395 0.2197 0.2197 ±1.1810 1.4529±0.1305
200×120 0.4516 0.2246 0.2246 ±1.2267 1.4840±0.1450

(Roshko 1954[26]) 0.2075
(Goldstein 1938[27]) 0.2066

384×96 (Alonso 1995[12]) 0.46735 0.23313 1.14946(Clmax) 1.31523(Cdavg)

Table 1 shows that the solution is converged based on mesh size. The computed lift frequency by
Zha-Hu CUSP scheme agrees well with the experimental results of Roshko[28] and Goldstein[27],

11



and is closer to the experimental results than the one computed by by Alonso et al.[12], which uses
larger size of grid points.

5.2 Vortex-Induced Oscillating Cylinder

After validating the stationary cylinder vortex shedding flow, the cylinder is released to be controlled
by the structure model as shown in Figure 1. The corresponding structural equations are given
in section 3.1. The laminar Navier-Stokes equations are solved due to the low Reynolds number,
Re = 500.

Using the temporally periodic solution obtained in the computation of stationary cylinder as the
initial flow field, the computation is resumed after the cylinder is let to move in both streamwise
and transverse directions. For the purpose of comparison with the experimental data of Griffin[29]
several different combinations of structural parameters are used in the computations.

Morton et al.[13] suggested to use the reduced velocity ū = 1

πSt
such that the structural oscil-

lator works under or near the resonance conditions. Therefore the computed St number from the
stationary cylinder is used to determine ū. For all the cases of oscillating cylinder, St is set to be
0.2, corresponding to ū = 1.5915. Different mass ratios, µs, are used to test the different responses
of the structural system. They are equal to 1.2732, 5.0, and 12.7324 respectively. To match the
wide range of the experimental data, the damping ratio, ζ, is chosen from the range between 0.001
- 1.583.

The dimensionless physical time step ∆t = 0.05 is used, which corresponds to approximately 100
time steps per period determined by the Strouhal number used. The CFL number for the pseudo
time steps varies from case to case. For the large cylinder movement cases, smaller pseudo time
steps are used to limit the displacement of the cylinder during each iteration.

For the cases computed, the CFL number varies from 5 to 500. The iteration number within
one physical time step varies from 20 to 100. Fig. 6 shows a typical iteration history within one
physical time step. Both the residual of the CFD solver and structure are reduced to machine zero.
The structure solver usually converges faster than the CFD solver.

Figure 7 displays the computed vorticity contours around the oscillating cylinder. It shows how
the vortexes are shed at the moment when the cylinder bounds back toward its mean position in y
direction.

A typical trajectory of the center position of the moving cylinder is plotted in Figure 8, which
is similar to the results computed by Blackburn et al.[30] and Alonso et al.[12]

All the numerical results for present study are plotted in Figure 9 for the three values of µs.
Also plotted are the computations of Alonso et al. [12] with µs = 5.0, computations of Morton et
al.[13] with µs = 12.73, and the experimental data of Griffin[29]. In the figure, the abscissa is the
reduced damping with the form of 8π2St2ζ m

ρD2 [30], and the ordinate is the cross-flow displacement
of motion normalized by the diameter of the cylinder. Overall, very good agreement is observed
between the present results and the experimental results, especially for the case of µs = 1.2732. The
figure shows that the higher values of mass ratios (µs = 5.0 and µs = 12.7324) give less satisfactory
results than those with µs = 1.2732, particularly at low damping ratios. However, they agree well
with the results of Morton et al.[13] (µs = 12.73).
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5.3 Elastically Mounted Airfoil

5.3.1 Steady State Transonic Airfoil

As the validation of the Zha-Hu CUSP scheme for transonic airfoils, the steady state solution of
the transonic RAE 2822 airfoil is calculated first. The freestream condition for this study are listed
in Table 2 below.

Table 2: Free-stream condition for RAE 2822 Airfoil
Mach number Static Pressure (psia) Temperature (R) Angle-of-Attack (deg) Reynolds Number

0.729 15.8073 460.0 2.31 6.5×106

The turbulent Reynolds stress and heat flux is calculated by the Baldwin-Lomax algebraic model[24].
This case is run using an O-type grid with three different dimensions, they are 128×50×1, 256×55×1,
and 512×95×1 respectively. The outer boundary extends to 15 chords from the center of the airfoil.
The experimental data provided by Cook et al.[31] are available for validation. The comparison of
pressure coefficient on the airfoil is shown in Figure 10. Overall, very good agreement is obtained
between the computation and experiment for each mesh dimension, especially for the two larger
ones which appear to be sufficient to capture the shock on the suction surface of the airfoil without
using any limiter. The important aerodynamic coefficients from both simulation and experiment
are summarized in Table 3.

Table 3: Aerodynamic coefficients and y+ for RAE 2822 Airfoil
Mesh Dimension Cd Cl Cm y+

128×50 0.01482 0.73991 0.09914 0.0833 - 2.3864
256×55 0.01455 0.73729 0.09840 0.1318 - 2.4016
512×95 0.01426 0.74791 0.09994 0.2309 - 2.0228

Prananta et al.[9] 0.01500 0.74800 0.09800
Experiment 0.01270 0.74300 0.09500

It can be seen in Table 3 that the predicted lift coefficients with all mesh dimensions agree well
with the experiment. The computed drag and moment coefficients show larger errors, but they
have the similar accuracy as those computed by Prananta et al.[9]. The relatively large error of the
drag and moment may be mostly due to the inadequacy of the turbulence model, which is difficult
to predict the surface friction accurately.

5.3.2 Forced Pitching Airfoil

As a validation case of the scheme for moving grid system, the forced pitching NACA 64A010
airfoil is calculated. For this transonic airfoil, the Reynolds averaged Navier-Stokes equations with
Baldwin-Lomax turbulence model are solved. Similar to the previous computation of the flow over
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the stationary airfoil, an O-type mesh consisting of 280×65 cells is employed for the computations
of forced pitching airfoil. The NACA 64A0101 airfoil is selected for this calculation because the
experimental data is available. The fine mesh zone or the non-deforming part of the mesh is shown
in Figure 11. The first grid point adjacent to the wall has the maximum y+ ≤ 3.43

The NACA 64A0101 airfoil is forced in pitch around its quarter chord sinusoidally. The angle of
attack is imposed as a function of time as α(t) = αm + αosin(ωt), where αm and αo are the mean
angle of attack and the amplitude of oscillation respectively. The ω is the angular frequency which
is directly related to the reduced frequency Kc =

ωc
2U∞

, where c is the airfoil chord, and U∞ is the
free-stream velocity. To compare with the experimental results given by Davis[32], the primary
parameters used in the computation are listed as follows: αm = 0, αo = 1.01◦, Re = 1.256 × 107,
M∞ = 0.8, reduced frequency, Kc = 0.202.

Again, the computation begins with the steady state flow field of the stationary airfoil at 0
degree angle of attack with a dimensionless time step ∆t = 0.1. The transition period takes about
3 cycles and the results becomes periodic in time after that. Figure 12 shows the lift oscillation
versus the angle of attack after the flow field reaches its temporally periodic solution. The computed
lift oscillation agrees well with the experiment[32], which has an evident improvement compared to
the recent result computed by McMullen et al. in 2002 [33].

Fig. 13 shows the computed moment coefficient compared with the experiment[32]. The com-
puted moment coefficient does not agree as accurately with the experiment as the lift coefficient
does. However the results are very similar to those predicted by Bohbot et al.[10] and McMullen
et al.[33]. The large discrepancy between the computation and the experiment for the moment
coefficient may be due to the inadequacy of the turbulence modeling, which may not predict the
surface friction accurately.

5.4 Flow-Induced Vibration of NACA 64A010 Airfoil

The structural model for the flow-induced vibration of a 2-D sweptback wing with a NACA 64A010
cross-section is described in section 3.2. This model was first introduced by Isogai [34] [34], and
has been numerically investigated by several researchers [2] [11] [9] [10]. The structural parameters
used in this model are listed as the following: a = −2.0, xα = 1.8, ωα

ωh
= 1, r2α = 3.48, and µ = 60.

The elastic axis is located half a chord upstream of the airfoil nose.

The unsteady Reynolds averaged Navier-Stokes equations with the Baldwin-Lomax turbulence
model are solved for the flow field in this study. The freestream conditions are: Re = 1.256× 107,
M∞ = 0.825.

Due to the symmetric profile of the NACA 64A010 airfoil, an initial perturbation is imposed to
trigger the oscillating motion. The airfoil is forced to rotate sinusoidally about its elastic axis at
the natural frequency in pitch ωα with an angle of attack amplitude, αo = 1◦. Usually the forced
pitching mode lasts for 1 - 3 cycles. After that, the elastically mounted airfoil is let to move in
both plunging and pitching directions, and then the dynamic response is recorded.

In present study, the search of the critical point on the transonic flutter boundary at a given
Mach number is conducted. The speed index, V ∗ defined as U∗

√
µ
, is the parameter to classify

damped, neutral and divergent responses of the airfoil when the Mach is fixed. In this case, the
total pressure and temperature need to be adjusted to match the certain value of the Re number.
Several calculations are needed to determine the critical point using a bi-section method.

14



In Figures (14) through (16) the time histories of plunging and pitching displacements at M∞
= 0.825 are plotted for three different V ∗. In these figures, from V ∗ = 0.55 to V ∗ = 0.70, the
plots correspond to the damped, neutral, and diverging responses respectively. The major task of
calculating a flutter boundary is to locate where the neutrally stable (critical point) is by looking
at those plots and determining where the neutral response occurs as the V ∗ varies. When the
value of V ∗ is smaller than the critical value on the flutter boundary, both plunging and pitching
displacements decay corresponding to the damped response as shown in Figure (14). Once the
value of V ∗ coincides with or is close to the critical value, the neutral response appears as shown in
Figure (15). Any value of V ∗ beyond the critical value, a diverging response is expected as shown in
Figure (16). Mach number 0.825 is located at the bottom of the sonic dip as reported in[16, 9, 10].
The predicted critical velocity index V ∗ = 0.615 is consistent with the results computed by those
researchers.

6 Conclusion

The efficient high resolution E-CUSP upwind scheme newly suggested by Zha and Hu[23] has been
successfully extended and applied to calculate flow induced vibration with moving grid based on
fully coupled fluid-structural interaction.

For an elastically mounted cylinder, various cases with different structural parameters have been
calculated. The predicted displacement agrees very well with the experiment and the numerical
results of other researchers.

For the forced pitching NACA 64A010 airfoil, the computed lift oscillation agrees accurately
with the experiment. The computed moment oscillation has large deviation from the experiment,
but the results are in the similar accuracy order as other researchers have achieved. The discrepancy
may be due to the inaccurate prediction of the surface shear stress caused by the inadequacy of the
turbulence modeling.

The same airfoil then has been calculated as an elastically mounted airfoil with flow induced
vibration. The computations have been carried out using different values of velocity index V ∗

which are below, close, and beyond the critical point on the flutter boundary. The corresponding
responses of the airfoil flows are well simulated. The predicted value of V ∗ at the bottom of the
transonic dip is consistent with the numerical results of other researchers [16, 10, 9].

The E-CUSP scheme of Zha-Hu is proved to be robust, accurate and efficient for calculating
flow induced vibrations based on fully coupled fluid-structural interaction.
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