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Abstract

A fully coupled numerical methodology is developed for calculating the flow-structure inter-
action problems. The Roe scheme is extended to moving grid and used with the finite-volume
method. The unsteady solutions march in time by using a dual-time stepping implicit unfac-
tored line Gauss-Seidel iteration. The unsteady Navier-Stokes equations and the linear struc-
tural equations are fully coupled implicitly via successive iteration with pseudo time stepping.
The moving mesh and mesh deformation strategy is based on two mesh zones, a fine mesh zone
surrounding the solid body without mesh deformation and a coarse mesh zone surrounding the
fine mesh zone and deforms with the solid object. This mesh deformation strategy can maintain
the orthogonality of the mesh near the wall and save CPU time for re-meshing. The study
cases presented include a vortex-induced oscillating cylinder, a forced pitching airfoil, and an
elastically mounted transonic airfoil. For the elastic transonic airfoil, the flutter boundary is
calculated. Other phenomena captured include the limit cycle oscillation (LCO) and the steady
state flow conditions, under which the aerodynamic forces and moments are balanced by the
structure. The computational results agree well with the experiments and the computed results
of other researchers. The methodology is demonstrated to be accurate, robust and efficient.

1 Introduction

Flow induced structural vibration is one of the most critical technical problems affecting the relia-
bility, cost and safety of aircraft. Due to the very complicated non-linear flow-structure interaction
and multidisciplinary (fluid and structure) requirements, there is a lack of high fidelity computa-
tional tools to study the basic physics and to predict the structural failure. The problems exist
in both the airframe and aircraft engine systems. The situation is worse for the aircraft engine
turbomachinery than airframe because the latter has numerous blades and the flow induced struc-
tural vibration is more complicated. The present research is aimed at developing a high fidelity
predicting methodology for flow induced vibration in aircraft engine turbomachinery.
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There are generally two types of methods to calculate the fluid-structure interaction problems:
the fluid and structure governing equations are loosely coupled or fully coupled. The loosely
coupled model means that the structural response lags behind the flow field solution. Within a
time step for the loosely coupled method, the structure solver calculates the response after the
flow solver is converged. This kind of methods may be limited to first-order temporal accuracy
only regardless of the temporal accuracy of the individual solvers[1]. The fully coupled model is
that the flow field and structure always respond simultaneously by exchanging the aerodynamic
forcing and structural displacement within each inner iteration of a time step. Obviously, only the
fully coupled model is rigorous in physical sense. Due to the complicated non-linear fluid-structure
interaction phenomenon in turbomachines such as transonic stall flutter, oscillating shock waves and
flow separation, etc., the fully coupled model between the fluid and structure system is necessary
and is selected for this research to achieve high accuracy.

Recently, efforts have been started to develop the predicting capability for flow induced vibration.
Bendiksen et al.[2] pioneered the research by using an explicit CFD code coupled with a structural
integrator based on the convolution integral to obtain the flutter boundary for a NACA 64A010
airfoil. The loosely coupled model between the fluid and structural solvers include the work of
Guruswamy[3], Lee-Rausch et al.[4], Smith[5], Vermeersch et al.[6], Darracq, et. al [7], Prananta,
et. al[8], Bohbot et al.[9], and Blom et al.[10]. Alonso and Jameson developed a model which
is close to the fully coupled method with the structural displacement updated every several fluid
solver iterations[11]. The implicit Runge-Kutta method with multigrid acceleration is employed for
the flow solver in Alonso’s work[11][12]. In 1997-98, Morton and Melville et al. developed a implicit
fully coupled fluid structural interaction model, which used the Beam-Warming implicit scheme for
the flow solver coupled with modal structural solver [13][14][1]. In 2000, Liu et al. developed a
fully coupled method using Jameson’s explicit scheme with multigrid method and a finite element
structural model [15].

The present study is to develop a fully coupled fluid-structure interaction model using different
numerical techniques to achieve high accuracy and efficiency. The following is to describe the
differences between the present methodology and the existing fully coupled methodologies developed
by Morton and Melville et al. [13][14] [1] and Liu et al. [15] :

1) The model of Morton and Melville et al.[13][14] [1] employs the implicit approximate factor-
ization (AF) scheme for the unsteady iteration within each physical time step. Even though the
AF method is implicit, the pseudo time step will be limited by the factorization error. The model
of Liu et al. [15] uses the explicit multigrid scheme to accelerate the convergence. Even though the
multigrid scheme has the capability to accelerate the convergence, the explicit scheme generally has
greater stiffness when the mesh is very fine near the wall. The present method uses the implicit
unfactored line Gauss-Seidel iteration that does not have factorization error and can allow very
large (pseudo) time step to have fast convergence rate.

2) Both the model of Morton and Melville et al.[13][14] [1] and Liu et al. [15] employ the central
differencing with an artificial dissipation model for the inviscid fluxes terms. The aerodynamic
damping for a flow induced vibration is sensitive to different artificial dissipation which many vary
case by case. Hence the central differencing with adjusted artificial dissipation may increase the
uncertainty of the results. The present paper extends the high accuracy upwind Riemann solver
of Roe to moving grid system in order to capture the high resolution unsteady shock waves and
boundary layers. The Roe scheme has inherent low numerical dissipation and no adjustment of the
numerical dissipation is needed for different problems.
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3) The mesh deformation in the present method is different from the previous methods, which
are based on the spring network and the mesh deformation occurs directly on the solid body
surface. In the present method, the mesh is divided into tow zones. One is the fine mesh zone
surrounding the solid body and moves with the solid object rigidly without deformation. The other
is the coarse mesh zone surrounding the fine mesh zone and deforms following the motion of the
solid object and its adjacent fine mesh zone. The advantages of this mesh deformation is that the
orthogonality of the mesh near the wall is maintained and the fine mesh near the solid wall does not
need to be regenerated by solving a Poisson equation. For a fluid-structure interaction problem, the
mesh needs to be changed for each iteration when the structure is deformed. Therefore, avoiding
regenerating the mesh near solid wall saves a significant amount of CPU time.

The present methodology has several common points with the methods of Prananta, et. al[8]
and Bohbot et al.[9]. The differences are: 1) both the methods of Prananta, et. al[8] and Bohbot
et al.[9] are loosely coupled between the flow and structure solver; 2) Prananta, et. al[8] employed
the thin layer Navier-Stokes equations which may not be able to count the effect of vortex shedding
and boundary layer separation; 3) Bohbot et al.[9] used the AUSM+ scheme and implicit LU-SGS
algorithm suggested by Yoon & Jameson[16]. The AUSM+ may generate pressure oscillations near
boundaries as indicated in [17].

In this paper, the newly developed methodology is proved to be robust, accurate and efficient
by the computed cases of a vortex-induced oscillating cylinder, a transonic pitching airfoil and an
elastically mounted NACA 64A010 airfoil. For the oscillating cylinder at low Reynolds number,
the unsteady laminar Navier-Stokes equations are solved. For the transonic airfoil, the Reynolds
averaged Navier-Stokes equations with Baldwin-Lomax turbulence model are solved. The computed
results agree well with the experiments.

2 CFD Aerodynamic Model

2.1 Flow Governing Equations

The governing equations for the flow field computation are the Reynolds-Averaged Navier-Stokes
equations (RANS) with Favre mass average which can be transformed to the generalized coordinates
and expressed as:

∂Q′

∂t
+

∂E′

∂ξ
+

∂F′

∂η
+

∂G′

∂ζ
=

1

Re

(

∂E′
v

∂ξ
+

∂F′
v

∂η
+

∂G′
v

∂ζ

)

(1)

where Re is the Reynolds number and

Q′ =
Q

J
(2)

E′ =
1

J
(ξtQ+ ξxE+ ξyF+ ξzG) =

1

J
(ξtQ+E′′) (3)

F′ =
1

J
(ηtQ+ ηxE+ ηyF+ ηzG) =

1

J
(ηtQ+ F′′) (4)
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G′ =
1

J
(ζtQ+ ζxE+ ζyF+ ζzG) =

1

J
(ζtQ+G′′) (5)

E′
v =

1

J
(ξxEv + ξyFv + ξzGv) (6)

F′
v =

1

J
(ηxEv + ηyFv + ηzGv) (7)

G′
v =

1

J
(ζxEv + ζyFv + ζzGv) (8)

where the variable vector Q, and inviscid flux vectors E, F, and G are
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, E =















ρ̄ũ
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ρ̄ṽw̃

ρ̄w̃w̃ + p̃
(ρ̄ẽ+ p̃)w̃















,

The E′′, F′′, and G′′ are the inviscid fluxes at the stationary grid system and are:

E′′ = ξxE+ ξyF+ ξzG,

F′′ = ηxE+ ηyF+ ηzG,

G′′ = ζxE+ ζyF+ ζzG,

and the viscous flux vectors are given by

Ev =















0

τ̄xx − ρu′′u′′

τ̄xy − ρu′′v′′

τ̄xz − ρu′′w′′

Qx















, Fv =















0

τ̄yx − ρv′′u′′

τ̄yy − ρv′′v′′

τ̄yz − ρv′′w′′

Qy















, Gv =















0

τ̄zx − ρw′′u′′

τ̄zy − ρw′′v′′

τ̄zz − ρw′′w′′

Qz















In above equations, ρ is the density, u, v, and w are the Cartesian velocity components in x, y
and z directions, p is the static pressure, and e is the total energy per unit mass. The overbar
denotes the Reynolds-averaged quantity, tilde and double-prime denote the Favre mean and Favre
fluctuating part of the turbulent motion respectively. All the flow variable in above equations are
non-dimensionlized by using the freestream quantities and a reference length L.

Let subscript 1, 2 and 3 represent the coordinates, x, y, and z, and use Einstein summation
convention, the shear-stress and Qx, Qy, Qz terms in non-dimensional forms can be expressed in
tensor form as
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τ̄ij = −
2

3
µ̃
∂ũk

∂xk
δij + µ̃(

∂ũi

∂xj
+

∂ũj

∂xi
) (9)

Qi = ũj(τ̄ij − ρu′′u′′)− (q̄i + CpρT ′′u′′i ) (10)

where the mean molecular heat flux is

q̄i = −
µ̃

(γ − 1)Pr

∂a2

∂xi
(11)

The molecular viscosity µ̃ = µ̃(T̃ ) is determined by Sutherland law, and a =
√
γRT∞ is the

speed of sound. The equation of state closes the system,

ρ̄ẽ =
p̃

(γ − 1)
+

1

2
ρ̄(ũ2 + ṽ2 + w̃2) + k (12)

where γ is the ratio of specific heats, k is the Favre mass-averaged turbulence kinetic energy. The
turbulent shear stresses and heat flux appeared in above equations are calculated by Baldwin-
Lomax model[18]. The viscosity is composed of µ + µt, where µ is the molecular viscosity and µt

is the turbulent viscosity determined by Baldwin Lomax model. For a laminar flow, the µt is set
to be zero.

2.2 Time Marching Scheme

The time dependent governing equation (1) is solved using the control volume method with the
concept of dual time stepping suggested by Jameson[19]. A pseudo temporal term ∂Q

∂τ
is added to

the governing equation (1). This term vanishes at the end of each physical time step, and has no
influence on the accuracy of the solution. However, instead of using the explicit scheme as in [19],
an implicit pseudo time marching scheme using line Gauss-Seidel iteration is employed to achieve
high CPU efficiency. For unsteady time accurate computations, the temporal term is discretized
implicitly using a three point, backward differencing as the following

∂Q

∂t
=

3Qn+1 − 4Qn +Qn−1

2∆t
(13)

Where n is the time level index. The pseudo temporal term is discretized with first order Euler
scheme. Let m stand for the iteration index within a physical time step, the semi-discretized
governing equation (1) can be expressed as

[(
1

∆τ
+

1.5

∆t
)I − (

∂R

∂Q
)n+1,m]δQn+1,m+1 = Rn+1,m − 3Qn+1,m − 4Qn +Qn−1

2∆t
(14)

where the ∆τ is the pseudo time step, R is the net flux going through the control volume,

R = − 1

V

∫

s
[(F − Fv)i+ (G−Gv)j+ (H −Hv)k]·ds (15)
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where V is the volume of the control volume, s is the control volume surface area vector. Equation
(14) is solved using the unfactored the line Gauss-Seidel iteration. The method is unconditionally
stable and can reach very large pseudo time step since no factorization error is introduced.

2.3 Roe’s Riemann Solver on Moving Grid System

An accurate Riemann solver is necessary to resolve the shock wave and wall boundary layer in the
flow field. The Roe scheme[20] is selected and implemented in the code to evaluate the inviscid
fluxes with the 3rd order MUSCL type differencing[21]. In present study, the original Roe scheme
is extended to moving grid system as the following, for example in ξ direction:

E′
i+ 1

2

=
1

2
[E′′(QL) +E

′′(QR) +QLξtL +QRξtR − |Ã|(QR −QL)]i+ 1

2

(16)

where QL and QR are the reconstructed variables to the left and right sides of the cell face, ξtL
and ξtR are the reconstructed grid velocity component in ξ direction to the left and right sides of
the cell interface i+ 1

2
, A is the Jacobian matrix, A = ∂E′

∂Q
and it takes the form as A = TΛT−1,

T is the right eigenvector matrix of A, Λ is the eigenvalue matrix of A, and

Ã = T̃Λ̃T̃−1 (17)

where Λ̃ is the eigenvalue matrix on moving grid system with the eigenvalues of

(Ũ + C̃, Ũ − C̃, Ũ , Ũ , Ũ) (18)

where Ũ is the contravariant velocity in ξ direction on moving grid,

Ũ = ξ̃t + ξxũ+ ξyṽ + ξzw̃ (19)

C̃ is the speed of sound corresponding to the contravariant velocity:

C̃ = c̃
√

ξ2x + ξ2y + ξ2z (20)

where c =
√
γRT is the physical speed of sound. The ∼ stands for the Roe-averaged quantities.

For example,

ξ̃t = (ξtL + ξtR

√

ρR/ρL)/(1 +
√

ρR/ρL) (21)

It can be proved that the eigenvector matrix T is exactly the same as the one without moving
grid. The only difference between the moving grid and the stationary grid system is that, for the
moving grid system, the contravariant velocity in the eigenvalues contains the grid velocity as given
in Equation (19). It is hence straightforward to extend the code from a stationary grid system to
the moving grid system using Roe scheme.

The grid velocity is evaluated at the center of each cell and is determined by the averaged value
that counts all the movement at eight vertexes if hexahedral control volumes are used. The grid
velocity is reconstructed with 3rd MUSCL differencing.
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2.4 Boundary Conditions

The flow field is solved subject to appropriate boundary conditions described as bellow:

(1) Upstream boundary conditions: The outer boundary is divided into upstream and down-
stream boundaries according to whether the direction of its segment is toward or backward to the
incoming flow direction. On upstream boundary, it is assumed that the streamwise velocity u is
uniform, and transverse velocity v = 0. Other primitive variables are specified according to the
freestream condition except the pressure which is extrapolated from interior.

(2) Downstream boundary conditions: All the flow quantities are extrapolated from interior
except the pressure which is set to be its freestream value.

(3) Solid wall boundary conditions: At moving boundary surface, the no-slip condition is enforced
by extrapolating the velocity between the phantom and interior cells,

u0 = 2ẋb − u1, v0 = 2ẏb − v1 (22)

where u0 and v0 denote the velocity at phantom cell, u1 and v1 denote the velocity at the 1st
interior cell close to the boundary, and ub and vb are the velocity on the moving boundary.

The other two conditions to be imposed on the solid wall are the adiabatic wall condition and
the inviscid normal momentum equation[13] as follows,

∂T

∂η
= 0,

∂p

∂η
= −

(

ρ

η2x + η2y

)

(ηxẍb + ηyÿb) (23)

2.5 Moving/Deforming Grid Systems

For both the cylinder and airfoil cases, the computational domains are divided into two regions,
namely the fine mesh zone and the coarse mesh zone. The fine mesh zone surrounds the solid body
of the object and the coarse mesh zone surrounds the fine mesh zone. In order to capture the
details of the boundary layer flow, a large number of grid points are distributed around the object
surface in the fine mesh zone. The outer flow field has smaller gradient, it hence can be computed
using a coarser mesh to reduce the CPU time.

When the structure deforms due to the fluid forcing, the fine mesh zone moves rigidly with the
object with no deformation, and the coarse mesh zone covers the rest of computational domain by
distorting its grids. The far field boundary is fixed with no motion. That is, the outer zone mesh
deforms with the motion of the inner zone mesh as a spring network system.

There are two advantages for handling the moving mesh systems using the present strategy :
1) the refined mesh around the object body is the same throughout the simulation and the same
accuracy can be achieved around the moving object regardless of the position of the object. The
mesh orthogonality is maintained; 2) the CPU time can be saved by avoiding re-meshing the fine
mesh region, where the Poisson equation needs to be solved for interior node points of the mesh
for each iteration. For fluid-structure interaction problem, the mesh needs to be changed for each
iteration when the structure is deformed. Therefore, avoiding regenerating the mesh near solid wall
saves a significant amount of CPU time.
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2.6 Geometric Conservation Law

It was pointed out by Thomas et al.[22] that due to the mixed temporal and spatial derivatives after
discretization, an additional term appears, which theoretically equals to zero but numerically still
remains. Consequently numerical error could be introduced in the discretized form of the equations
of the flow motion if this term is neglected. In order to reduce or avoid this error, the geometric
conservation law needs to be enforced. In other words, the following additional term should be
added to the right-hand side of the equations as a source term:

S = Q

[

∂J−1

∂t
+

(

ξt
J

)

ξ

+

(

ηt
J

)

η

+

(

ζt
J

)

ζ

]

(24)

To implement this option in the flow solver, the source term is then linearized such that

Sn+1 = Sn +
∂S

∂Q
∆Qn+1 (25)

As has been observed, the overall performance of this numerical supplement is beneficial with
very little CPU time cost.

3 Structural Models

3.1 Elastic Cylinder

For the computations of the vortex-induced oscillating cylinder, which is elastically supported as
shown in Figure 1 so that it oscillates only in the direction aligned with or normal to the incoming
flow, the structural dynamic equations which govern the motion of the cylinder are:

mẍ+ Cxẋ+Kxx = D (26)

mÿ + Cyẏ +Kyy = L (27)

These equations are solved implicitly together with the equations of flow motion, Equation (14),
in a fully coupled manner. In Equation (26), ẍ, ẋ, and x represent the dimensionless horizontal
acceleration, velocity and displacement of the moving object respectively. Similarly, ÿ, ẏ, and y in
Equation (27) represent their corresponding ones in vertical direction. m, L, and D are the mass,
lift, and drag per unit span respectively, Cx and Cy are the damping coefficients in horizontal and
vertical directions, Kx and Ky are the spring constants in horizontal and vertical directions. In
present study, this ’self-excited oscillators’ is designed to have the same response in both direction,
i.e. Cx = Cy and Kx = Ky.

If the normalization procedure is applied to Equations (26) and (27) by using the same reference
scales of those used for the equations of flow motion, the following nondimensional equations are
obtained

ẍ+ 2ζ

(

2

ū

)

ẋ+

(

2

ū

)2

x =
2

µsπ
Cd (28)
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ÿ + 2ζ

(

2

ū

)

ẏ +

(

2

ū

)2

y =
2

µsπ
Cl (29)

where ζ is the nondimensional structural damping coefficient calculated by ζ =
Cx,y

2
√

mKx,y

, ū is the

reduced velocity defined by ū = U∞
bω

, b is radius of the cylinder, ω =
√

Kx,y/m, the mass ratio,

µs =
m

πρ∞b2
, Cd and Cl are the drag and lift force coefficients respectively. Then the equations are

transformed to a matrix form and expressed by

[M]
∂{S}
∂t

+ [K]{S} = q (30)

where

S =











x
ẋ
y
ẏ











, M = [I], K =















0 −1 0 0
(

2
ū

)2
2ζ
(

2
ū

)

0 0

0 0 0 −1
0 0

(

2
ū

)2
2ζ
(

2
ū

)















, q =











0
2

µsπ
Cd

0
2

µsπ
Cl











.

To couple the structural equations with the equations of flow motion and solve them implicitly
in each physical time step, above equations are discretized and integrated in a manner consistent
with Equation (14) to yield

(

1

∆τ
I+

1.5

∆t
M+K

)

δSn+1,m+1 = −M3Sn+1,m − 4Sn + Sn−1

2∆t
−KSn+1,m + qn+1,m+1 (31)

where n is the physical time level index while m stands for the pseudo time index. The detailed
coupling procedure between the fluid and structural systems is given in section 4.

3.2 Elastic Airfoil

Unlike the structural model of the vortex-induced oscillating cylinder, the system of the elastically
mounted airfoil is assumed to be undamped. The airfoil is allowed to move in pitch about a given
elastic axis and plunge vertically. The pitch axis is defined by a distance a, which is the multiple
of the semi-chord length with the origin point located at the mid-chord position. If a is positive, it
means the axis is located downstream of the mid-chord, negative means being located upstream of
the mid-chord point.

A sketch of the elastically mounted airfoil is depicted in Figure 2. The motion of such an elastic
system can be described by using the following equations

mḧ+ Sαα̈+Khh = −L (32)

Sαḧ+ Iαα̈+Kαα = M (33)

where h and α are the plunging and pitching displacements respectively, m is the mass per unit
span, Sα is the static moment around the elastic axis, Iα is the rotational moment of inertia, Kh and
Kα are plunging and pitching spring constants respectively, L is the lift force and M is the moment
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around the elastic axis. The equations of the structure motion (32) and (33) are normalized by
using semi-chord b as the length dimension, the uncoupled natural frequency in pitch ωα as the
time scale, and are expressed as

ḧ+ xαα̈+

(

ωh

ωα

)2

h = −U∗2

µπ
Cl (34)

xαḧ+ r2αα̈+ r2αα =
U∗2

µπ
Cm (35)

where xα is the static unbalance, ωh is the uncoupled natural frequency in plunge, r2α is the squared
radius of gyration, U ∗ is the reduced velocity defined as U∞

ωαb
, Cl and Cm are the lift and moment

coefficient respectively. Since the time scale used in Equations (34) and (35) is different from the
one used in the governing equations of flow, the structural dimensionless time t∗s needs to be re-
scaled and keep its consistency with the entire system during the computation, i.e., t∗s = ωαL

U∞
t∗f ,

where t∗f is the dimensionless time for flow and the L is the length scale. Finally the equations are
cast into the form of Equations (30) and (31), and the corresponding matrices are

S =











h

ḣ
α
α̇











, M =











1 0 0 0
0 1 0 xα

0 0 1 0
0 xα 0 r2α











, K =













0 −1 0 0
(

ωh
ωα

)2
0 0 0

0 0 0 −1
0 0 r2α 0













, q =













0

−U∗2

µπ
Cl

0
U∗2

µπ
Cm













.

4 Flow-Structure Coupling

Within a physical time step, the structural motion and the flow field are unknown and are solved
iteratively between the fluid and structural systems in a fully couple manner. The following is the
procedure:

(1) The variables at new time level n+1 of the flow and structural equations are initially set to
the values of time level n.

(2) Calculate the aerodynamic forces including lift, drag, and torque exerting on the solid body
of the object.

(3) Determine the position of the moving object subject to the aerodynamic forces by solving
the structural equations.

(4) Re-generate the mesh and calculate the grid velocity at each node point according to the
updated structural position.

(5) Calculate the flow field by solving the equations of flow motion for the updated mesh and
structural position.

(6) Check the maximum residuals for both solutions of the flow and the structural equations.
If the maximum residuals are greater than the prescribed convergence criteria, go back to step (2)
and proceed to the next pseudo time level m + 1, otherwise the flow field and the movement of
the moving object are determined and go back to step (1) to start the next new physical time step
n+ 1. The procedure can be also seen in the flow chart given in Figure 3.
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5 Results and Discussion

The numerical results for the calculated 2-D problems are presented and discussed in this section.
The vortex-induced oscillating cylinder is presented first. Then a transonic forced pitching airfoil
and flow-induced vibration of the same airfoil are presented.

5.1 Vortex-Induced Oscillating Cylinder

The stationary cylinder is calculated first to verify the accuracy of the code, to determine the
appropriate mesh dimension, and to provide the initial flow field for the oscillating cylinder.

5.1.1 Stationary Cylinder

The fine mesh zone mentioned in the previous section for the computation of vortex-induced oscil-
lating cylinder is shown in Figure 4. The Reynolds number based on the free-stream condition and
cylinder diameter is Re = 500. The free-stream Mach number is M∞ = 0.2. The far field boundary
is located 20 diameters away from the center of the cylinder. To resolve the boundary layer effect,
very fine grids are clustered to the cylinder surface with first grid spacing in radial direction '
0.0005 diameter.

Three different mesh dimensions are used to conduct the mesh refinement study for the stationary
cylinder. Table 1 shows that the mesh with the dimensions of 120×80 in circumferential and radial
directions can resolved the flow field with a satisfactory accuracy and is converged based on the
mesh refinement study. This mesh is then used as the baseline mesh for all the computations
involving flow past a cylinder.

After a short transition period, the coherent vortex shedding is formed and convected down-
stream of the cylinder without imposing any perturbation. Consequently, the lift and torque coef-
ficients oscillate at certain frequency in terms of the Strouhal number defined as St = fD

U∞
where

D is cylinder diameter and f is the frequency. The predicted drag coefficient oscillates with twice
of the lift frequency. The computed Strouhal number, drag, lift and torque coefficients are given in
Table 1. As can be seen in Table 1, the computed lift Strouhal number agrees accurately with the
experimental results of Roshko[23] and Goldstein[24]. The corresponding numerical results with the
mesh dimension of 384×96 by Alonso et al.[12] using central differencing with artificial dissipation
are also listed in the table for comparison. The frequency in term of StCl predicted by the present
method is significantly more accurate than the results of Alonso et al.[12], whose grid size is 3.84
times larger. The computed time histories of the drag and lift coefficients is plotted in Figure 5,
which shows that perfect periodicity in time is achieved.

5.1.2 Oscillating Cylinder

The elastically mounted cylinder is represented by the structural model sketched in Figure 1 and the
corresponding structural equations are given in section 3.1. The laminar Navier-Stokes equations
are solved due to the low Reynolds number.
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Table 1: Results of Mesh Refinement Study and comparison with the experiments
Mesh Dimension StCd StCl StCm Cl Cd

80×40 0.3931 0.1978 0.1978 ±1.0164 1.3415±0.0916
120×80 0.4126 0.2075 0.2075 ±0.9921 1.3405±0.0958
200×150 0.4199 0.2100 0.2100 ±0.9994 1.3525±0.0989

(Roshko 1954[23]) 0.2075
(Goldstein 1938[24]) 0.2066

384×96 (Alonso 1995[12]) 0.46735 0.23313 1.14946(Clmax) 1.31523(Cdavg)

After a temporally periodic solution is reached, the cylinder is set to free in both streamwise
and transverse directions. For the purpose of comparison with the experimental data of Griffin[25]
several different combinations of structural parameters are used in the computations.

Morton et al.[13] suggested to use the reduced velocity ū = 1
πSt

such that the structural oscil-
lator works under or near the resonance conditions. Therefore the computed St number from the
stationary cylinder is used to determine ū. For all the cases of oscillating cylinder, St is set to be
0.2, corresponding to ū = 1.5915. Different mass ratios, µs, are used to test the different responses
of the structural system. They are equal to 1.2732, 5.0, and 12.7324 respectively. To match the
wide range of the experimental data, damping ratio, ζ, is chosen from the range between 0.001 -
1.583.

The dimensionless physical time step ∆t = 0.05 is used, which corresponds to approximately 100
time steps per period determined by the Strouhal number used. The CFL number for the pseudo
time steps varies from case to case. For the large cylinder movement cases, smaller pseudo time
steps are used to limit the displacement of the cylinder during each iteration. For most of the cases
the CFL number is about 500.

Figure 6 and 7 display the computed vorticity contours around the oscillating cylinder with
small and large oscillation amplitude respectively. It can be seen that for the small amplitude case,
the vortexes keep their coherent shedding pattern similar to the one generated by the stationary
cylinder. Once the vibrating displacement becomes large, the coherent shedding of the vortexes is
broken and the vortex structure becomes very irregular.

A typical time history of the drag and lift coefficients is plotted in Figure 8 with µs = 5 and
ζ = 0.0403. It shows that the amplitude of the drag coefficient grows from a smaller value at the
beginning and reaches a larger periodic equilibrium. In other words, the drag coefficient becomes
larger as the streamwise displacement of the cylinder exists. On the contrary, the amplitude of
the lift coefficient is gradually reduced from its initial value computed for the fixed cylinder. This
phenomenon is called the amplitude-limiting effect[26], and can be observed in almost all the
simulations for which the cylinder is in motion.

A typical trajectory of the center position of the moving cylinder is plotted in Figure 9, which
is very similar to the results computed by Blackburn et al.[26] and Alonso et al.[12]

All the numerical results for present study are plotted in Figure 10 for three values of µs, they
are equal to 1.2732, 5.0, and 12.7324 respectively. Also plotted are the computations of Alonso et al.
[12] with µs = 5.0, computations of Morton et al.[13] with µs = 12.73, and the experimental data of
Griffin[25]. In the figure, the abscissa is the reduced damping with the form of 8π2St2ζ m

ρD2 [26], and
the ordinate is the cross-flow displacement of motion normalized by the diameter of the cylinder.
Overall, very good agreement is observed between the present results and the experimental results,
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especially for the case of µs = 1.2732. The figure shows that the higher values of mass ratios (µs =
5.0 and µs = 12.7324) give less satisfactory results as those with µs = 1.2732, particularly at low
damping ratios. However, they are similar to the results of Alonso et al.[12] (µs = 5.0), and the
results of Morton et al.[13] (µs = 12.73).

The solution of the structural equations are easier to converge with a higher convergence rate
compared to the fluid solution. The number of pseudo time steps taken during one physical time
step varies from case to case. On the average, about 20 - 100 pseudo time steps are needed to reduce
the residuals of both systems to machine zero. Figure 11 shows a typical convergence history of L2

norm residuals of both the fluid and structural systems versus iteration number during one physical
time step for the case of vortex-induced oscillating cylinder. The residual of CFD in the figure is
the the maximum residual over all the grid points of the flow field.

5.2 Elastically Mounted Airfoil

5.2.1 Steady State Transonic Airfoil

As the validation of the code for transonic airfoil, the steady state solution of the transonic RAE
2822 airfoil is calculated first. The freestream condition for this study are listed in Table 2 below.

Table 2: Free-stream condition for RAE 2822 Airfoil
Mach number Static Pressure (psia) Temperature (R) Angle-of-Attack (deg) Reynolds Number

0.729 15.8073 460.0 2.31 6.5×106

The turbulence is calculated by the Baldwin-Lomax model. This case is run using an O-type
grid with three different dimensions, they are 128×50×1, 256×55×1, and 512×95×1 respectively.
The outer boundary extends to 15 chords from the center of the airfoil. The experimental data
provided by Cook et al.[27] are available for validation. The comparison of pressure coefficient on the
airfoil is shown in Figure 12. Overall, very good agreement is obtained between the computation
and experiment for each mesh dimension, especially for the two larger ones which appear to be
sufficient to capture the shock on the suction surface of the airfoil without using any limiter. The
important aerodynamic coefficients from both simulation and experiment are summarized in Table
3.

Table 3: Aerodynamic coefficients and y+ for RAE 2822 Airfoil
Mesh Dimension Cd Cl Cm y+

128×50 0.01475 0.73790 0.09912 0.0304 - 2.4070
256×55 0.01484 0.74036 0.09914 0.1813 - 2.3649
512×95 0.01354 0.74929 0.09861 0.0559 - 1.7569

Prananta et al.[8] 0.01500 0.74800 0.09800
Experiment 0.01270 0.74300 0.09500
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In summary, the predicted lift coefficient agrees accurately with the experiment. The computed
drag and moment coefficients also agree well with the experiment, but with larger errors.

5.2.2 Forced Pitching Transonic Airfoil

As a validation case of the methodology for moving grid system, the forced pitching NACA 64A010
airfoil is calculated. For this transonic airfoil, the Reynolds averaged Navier-Stokes equations with
Baldwin-Lomax turbulence model are solved. Similar to the previous computation of the flow over
the stationary airfoil, an O-type mesh consisting of 280×65 cells is employed for the computations
of forced pitching airfoil. The NACA 64A0101 airfoil is selected for this calculation because the
experimental data is available. The fine mesh zone or the non-deforming part of the mesh is shown
in Figure 13. The first grid point adjacent to the wall has the maximum y+ ≤ 3.46

The NACA 64A0101 airfoil is forced in pitch around its quarter chord sinusoidally. The angle of
attack is imposed as a function of time as α(t) = αm + αosin(ωt), where αm and αo are the mean
angle of attack and the amplitude of oscillation respectively. The ω is the angular frequency which
is directly related to the reduced frequency Kc =

ωc
2U∞

, where c is the airfoil chord, and U∞ is the
free-stream velocity. To compare with the experimental results given by Davis[28], the primary
parameters used in the computation are listed as follows: αm = 0, αo = 1.01◦, Re = 1.256 × 107,
M∞ = 0.8, reduced frequency, Kc = 0.202.

Again, the computation begins with the steady state flow field of the stationary airfoil at 0 degree
angle of attack with a dimensionless time step ∆t = 0.1. The transition period takes about 3 cycles
and the results becomes periodic in time after that. Figure 14 shows the lift oscillation versus
the angle of attack after the flow field reaches its temporally periodic solution. The computed lift
oscillation agrees quite well with the experiment[28], which have an evident improvement comparing
with the recent result computed by McMullen et al. in 2002 [29].

Fig. 15 shows the computed moment coefficient compared with the experiment[28]. The com-
puted moment coefficient does not agree as accurately with the experiment as the lift coefficient
does. However the results are very similar to those predicted by Bohbot et al.[9] and McMullen
et al.[29]. The large discrepancy between the computation and the experiment for the moment
coefficient may be due to the inadequacy of the turbulence modeling, which may not predict the
surface friction accurately.

5.2.3 Flow-Induced Vibration of NACA 64A010 Airfoil

The structural model for the flow-induced vibration of a 2-D sweptback wing with a NACA 64A010
cross-section is described in section 3.2. This model was first introduced by Isogai [30] [30], and has
been numerically investigated by several authors [2] [11] [8] [9]. The structural parameters used in
this model are listed as the following: a = −2.0, xα = 1.8, ωα

ωh
= 1, r2α = 3.48, and µ = 60. The

elastic axis is located half a chord in the front of the airfoil nose.

The unsteady Reynolds averaged Navier-Stokes equations with the Baldwin-Lomax turbulence
model are solved for the flow field in this study. The baseline freestream conditions are: Re =
1.256× 107, M∞ = 0.75 - 0.95 with a constant increment of 0.025.

Due to the symmetric profile of the NACA 64A010 airfoil, an initial perturbation is imposed to
trigger the oscillating motion. The airfoil is forced to rotate sinusoidally about its elastic axis at
the natural frequency in pitch ωα with an angle of attack amplitude, αo = 1◦. Usually the forced
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pitching mode lasts for 1 - 3 cycles. After that, the elastically mounted airfoil is set to be free in
both plunging and pitching directions, and then the dynamic response is recorded.

In present study, the search of the transonic flutter boundary is conducted. The speed index, V ∗

defined as U∗
√
µ
, is the parameter to classify damped, neutral and divergent responses of the airfoil.

For a given Mach number, the total pressure and temperature need to be adjusted to match the
certain value of the Re number. In each case, several calculations are needed to determine the
critical point on the flutter boundary using a bi-section method. At certain Mach number, the
flutter boundary is very ‘thin’, and more calculations are necessary to really capture the critical
points. The dynamic response immediately after the transonic dip becomes very complex, and
locating the flutter boundary in that region (Mach = 0.875 - 0.9) is very difficult and time-
consuming.

In Figures (16) through (18) the time histories of plunging and pitching displacements at M∞
= 0.825 are plotted for three different V ∗. In these figures, from V ∗ = 0.55 to V ∗ = 0.70, the
pictures correspond to the damped, neutral, and diverging responses respectively. The major task
of calculating a flutter boundary is to locate where the neutrally stable or critical point is by looking
at those pictures and determining where the neutral response occurs as the V ∗ varies. When the
value of V ∗ is smaller than the critical value on the flutter boundary, both plunging and pitching
displacements decay corresponding to the damped response as shown in Figure (16). Once the
value of V ∗ coincides with or closes to the critical value, the neutral response appears as shown in
Figure (17). Any value of V ∗ beyond the critical value, a diverging response is expected as shown
in Figure (18).

The V ∗ and the frequency ratio ω
ωα

for the flutter boundary are plotted versus Mach number
in Figures (19) and (20) respectively. Also plotted in the figures are the results from two other
computations by Prananta et al. [8] and Bohbot et al. [9]. The Mach number for the bottom of
the transonic dip of 0.825 is consistent with their results.

Overall, the present results compare well with the results of of Prananta et al. and Bohbot et al.
except that both values of V ∗ and ω

ωα
ratio are higher at high Mach number region (Mach = 0.925

to 0.95). The primary difference between the present results and their results are: 1) The present
results are based on fully coupled fluid-structure interaction. Their results are loosely coupled; 2)
The Reynolds number of the present results is about twice higher. Both the present results and
Prananta et al. are based on the same Baldwin-Lomax turbulence model. To study the effect of
Reynolds number, the flutter boundary at Mach = 0.925 and 0.95 are re-calculated with the same
Reynolds number (6× 106) used by Prananta et al. The difference is small. Hence, the difference
between the present results and the results of of Prananta et al. and Bohbot et al. may be due
to the fully coupled and loosely coupled algorithm. Since there are no experimental results for
comparison, it is difficult to judge which result is more correct.

Except the flutter boundary, the present solver also has captured the Limit Cycle Oscillation
(LCO) phenomenon as shown in Figure (21). LCO occurs when the velocity index is greater
than the flutter velocity index[31]. The amplitude is large, but stable. LCO is considered due to
the nonlinear nature of the shock boundary layer interaction occurring for transonic airfoil[31, 9].
Figure (22) presents a different LCO with the second torsion mode more dominant.

Figure (23) shows an interesting situation happening at Mach = 0.875 and in the area of
V ∗ = 2.5. Both plunging and pitching displacements of the system increase rapidly immediately
after the airfoil is set to be free, but then gradually reach their steady state positions and stay
there through the end of the computation. Under this flow condition, the aerodynamic forces and
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moments are balanced by the structure system. The angle of attack is stabilized at 2.9◦ and is in
the range of the cruise point which should be stable. This situation is only observed at Mach =
0.875, and maybe named as ‘standing’. The V ∗ of the standing phenomenon is not located at one
point, but a region around V ∗ = 2.5. The results and flow conditions of the ‘standing’ phenomenon
needs to be confirmed by experiment.

6 Conclusion

A fully coupled methodology is developed for calculating the flow-structure interaction problems
with moving and deforming mesh systems. The scheme is derived using finite-volume flux-difference-
split scheme of Roe with a 3rd order MUSCL type differencing. The extension of the Roe scheme
to moving mesh system is described.

The unsteady solutions march in time by using a dual-time stepping implicit unfactored line
Gauss-Seidel iteration, incorporating a local time stepping technique. The unsteady Navier-Stokes
equations and the linear structural equations are fully coupled implicitly via successive iteration
with pseudo time stepping, and approach the final solution in which both systems satisfy each other
completely.

The moving mesh and mesh deformation strategy is based on two mesh zones. One is the fine
mesh zone surrounding the solid body and moves with the solid object rigidly without deformation.
The other is the coarse mesh zone surrounding the fine mesh zone which deforms due to the motion
of the solid object and its adjacent fine mesh zone. The advantages of this mesh deformation
strategy is that the orthogonality of the mesh near the wall is maintained and the fine mesh near
the solid wall does not need to be regenerated to save CPU time. The computed cases have
shown that such mesh deformation method has no difficulty in dealing with very large structural
displacement.

For an elastically mounted cylinder, various cases with different structural parameters have been
calculated. Compared with the available experimental data, the numerical results show that the
important characteristics, such as cross-flow displacement, the motion of the cylinder, etc., are well
predicted.

For the forced pitching NACA 64A010 airfoil, the computed lift oscillation agrees very well with
the experiment. The computed moment oscillation has large deviation from the experiment, but
the results are in the similar accuracy order as other researchers have achieved. The discrepancy is
considered due to the inaccurate prediction of the surface shear stress caused by the inadequacy of
the turbulence modeling. The same airfoil then has been calculated as an elastically mounted airfoil
with flow induced vibration. Three different responses, namely damped, neutral, and diverging
response are well simulated. The flutter boundary is obtained with the transonic dip and agree
well with the results of other researchers. The other phenomena captured including the limit cycle
oscillation (LCO) and the steady state ’standing’ flow condition, under which the aerodynamic
force and moment are balanced by the structure system.

In conclusion, the newly developed fully coupled fluid-structure interaction methodology is
proved to be accurate, robust and efficient.
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Figure 13: O-type mesh around the NACA
64A010 airfoil
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Figure 15: Comparison of computed moment co-
efficient with Davis’ experimental data for the
forced pitching airfoil.
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Figure 16: Time histories of plunging and pitch-
ing displacements for M∞ = 0.825 and V ∗ = 0.55
- Damped response.
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Figure 17: Time histories of plunging and pitch-
ing displacements for M∞ = 0.825 and V ∗ = 0.59
- Neutrally stable response.
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Figure 18: Time histories of plunging and pitch-
ing displacements for M∞ = 0.825 and V ∗ = 0.70
- Diverging response.
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Figure 19: Comparison of computed flutter
boundaries - Speed index versus Mach number.
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Figure 20: Comparison of computed flutter
boundaries - ω

ωα
versus Mach number.
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Figure 21: Time histories of plunging and pitch-
ing displacements for M∞ = 0.925 and V ∗ = 5.5
- Limit Cycle Oscillation.
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Figure 22: Time histories of plunging and pitch-
ing displacements for M∞ = 0.9 and V ∗ = 2.5
with the second mode vibration dominant.
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Figure 23: Time histories of plunging and pitch-
ing displacements for M∞ = 0.875 and V ∗ = 2.5
- ‘Standing’ status.
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