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Abstract

The mechanism of entropy creation in an adiabatic
boundary layer is studied. The local entropy cre-
ation rate has two sources: shear stress work and
heat flux gradient. These two factors have the same
order of magnitude everywhere in the boundary
layer. Their balance results in a fairly uniform dis-
tribution of entropy creation rate across the bound-
ary layer. In the inner layer region, the large rate of
entropy creation due to the velocity gradient and
shear stress is offset by the gradient of the heat
flux. The heat flux gradient is so large that a neg-
ative entropy creation region is generated in the
inner layer. With the new theory of the entropy
creation mechanism, the wall function methods for
the internal turbulent flow loss prediction are justi-
fied. Detailed theoretical derivation and numerical
proof are given in the paper. The previous theory
of local entropy creation mechanism in a boundary
layer given by Denton ignored the important heat
flux gradient factor. Denton’s theory will lead to a
large false error when it is used to study the appli-
cability of wall function methods to loss prediction.
The numerical solutions of a transonic cascade us-
ing wall functions and integrating to the wall are
compared. The difference for the loss prediction
using these two methods is small and is consistent
with the error range given from the loss mechanism
theory of this paper.

1 Introduction

As Denton pointed out in his well known article
“Loss Mechanisms in Turbomachines” [1], the mea-
sure of performance for internal flows is the loss,
which is directly related to the efficiency of a ma-
chine. This is different from the external flows,
where the surface forces (e.g. skin friction, lift)
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are usually of the interest. Denton gave the in
depth analysis of the loss mechanisms for various
sources including boundary layer, mixing, shock
waves, heat transfer, end wall, tip clearance, etc.
Denton emphasized that the use of correlations to
predict the loss should not be a substitute for try-
ing to understand the origin of the loss, and sug-
gested that a good physical understanding of the
latter may be more valuable than a quantitative
prediction.

The loss of an internal flow is determined by the
entropy creation. Hence entropy is usually used
to study the loss mechanism. For the boundary
layer loss mechanism, Denton derived the total rate
of entropy creation across an adiabatic boundary
layer as the following:
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This means that the shear stress work is the
sole source for the entropy creation of an adiabatic
boundary layer. Eq.(1) represents the integral of
the local entropy creation rate multiplied by the
mass flow rate. If eq.(1) is divided by the total
mass across the boundary layer, it is the usually de-
fined mass averaged total rate of entropy creation
across the boundary layer. If eq.(1) is normalized
by peul /T, it is called dissipation coefficient. Den-
ton further extended the conclusion of eq.(1) to the
local rate of entropy creation within a boundary
layer as:
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Following this thought, Denton presented the
plots of 7, vs V, for several typical turbulent
boundary layers with and without pressure gradi-

ent, which indicate that most of the entropy cre-



ation is within the viscous sublayer and the loga-
rithm region. Denton also referred Dawes’s results
[2], which shows that 90% of the entropy gener-
ation occurs within the inner part of a turbulent
boundary layer.

The inner layer is a very thin layer from the
solid wall surface to logarithm layer (2% to 20%
of the boundary layer thickness[3]) compared with
the overall thickness of a turbulent boundary layer.
Denton’s conclusions mean that the thick outer
layer actually has very little entropy creation. Den-
ton hence further indicated that the entropy cre-
ation may be insensitive to the detailed state of a
boundary layer since usually only the outer layer is
greatly affected by the streamwise pressure gradi-
ent.

If all of the above conclusions are true, we then
face a serious challenge: the widely used wall func-
tion boundary conditions are wrong to predict the
flow loss. The concept of wall functions is to make
use of the law of the wall to avoid resolving the in-
ner layer of a turbulent boundary layer when the
transport equations of the turbulence are solved,
for example, k — € model, £k — w model, Reynolds
Stress Equation model[4][5], etc. The advantage of
using wall functions is that it is more CPU effi-
cient. The first grid point is usually located in the
logarithm layer, i.e., 30 < y™ < 150. However, in-
ferring from Denton’s theory[l], we may conclude
that wall function methods, which ignore the in-
ner layer where most of the entropy is created, will
significantly under-predict the loss and can not be
used for internal flows[6].

Wall functions can calculate the surface skin
friction fairly accurately as long as the boundary
layer is not separated. Wall functions were there-
fore first used for external flows. When it was used
for internal flows, few questions were asked why
the wall function methods can predict the flow loss
by neglecting the high gradient sublayer. As indi-
cated by eq.(1), the loss of an internal flow is de-
termined by the integral across the boundary layer,
not only the forces on the surface. Even though no
study has been done to justify using wall functions
for loss prediction, wall functions have been pop-
ularly used for internal flows. For example, the
famous APNASA code developed by Adamczyk [7]
for multi-stage turbomachines uses wall functions
for its k — € turbulence model. For the popularly
used commercial CFD solver, Fluent, version 6 (the
latest version), the standard option for k — € model
uses wall functions (see Fluent User’s Guide). For
the past two decades of CFD development and ap-
plication, it seems that people haven’t complain too
much about the dramatic error caused by wall func-

tions for loss prediction. The conventional wisdom
may have some merit.

Strictly speaking, wall functions only exist when
the turbulent boundary layer is attached. However,
people use wall functions for all kinds of flows, sep-
arated or attached. The argument is, when the flow
is separated, other models do not necessarily pre-
dict the flow better. Wall function concept is not
only used for RANS (Reynolds averaged Navier-
Stokes equations) methods, it is sometimes also
employed for LES(Large Eddy Simulation). This
paper is not to advocate using wall function meth-
ods, but to clarify some theoretical misconception.

Now, the question is: can the wall functions re-
ally be used for internal turbulent flow loss pre-
diction (assume the boundary layer is attached)?
The first objective of this paper is to answer this
question. To do so, we have to re-visit the issue
of loss mechanism of a turbulent boundary layer,
because it seems conflicting between the Denton’s
loss mechanism theory[1] and using wall functions.
Hence the second objective of this paper is to re-
examine the loss mechanism for a boundary layer.
Following Denton’s article[1], we primarily focus on
the adiabatic boundary layers.

The study of this paper found that the local rate
of entropy creation given in Denton’s theory, eq.(2),
is incorrect, even though the total rate of the en-
tropy creation of eq.(1) is correct. The local rate
of eq.(2) has ignored a very important contribution
to entropy creation caused by the heat flux gradi-
ent. This contribution is canceled out for the total
rate of entropy creation when integrated across the
boundary layer. It is shown that, when the heat
flux gradient is considered, the actual error of en-
tropy creation rate caused by using wall functions
is small and acceptable.

With the advent of high speed computers, nu-
merical solutions of complicated flow problems are
commonly used. Under this circumstance, under-
standing of the fundamental physical mechanism
becomes more important to interpret the numer-
ical techniques and solutions. The effort of this
paper is to fill some gap between the numerics and
physics.

According to the findings of the loss mechanism
is this paper, the following speculation may be in-
ferred: For incompressible flow computation, if the
energy equation is not solved and the wall func-
tions are used, the loss prediction may have a large
discrepancy because the entropy creation due to
the heat flux gradient is not available. This topic
is beyond the scope of this paper and needs to be
studied separately.



2 The Concept of Wall Func-
tions

A turbulent boundary layer may be considered as
being composed of three layers: the viscous sub-
layer, the logarithm layer, and the defect layer.
The viscous sublayer and the logarithm layer is also
called inner layer and the defect layer is called outer
layer. The inner layer is not as sensitive as the outer
layer to the flow history and free stream variation.

The logarithm layer is close enough to the wall
surface that the convection can be neglected yet
distant enough that the viscous stress is negligible,
because it is in the fully turbulent region. The dis-
tance from the wall to the logarithm layer is usually
about 10% of the whole boundary layer thickness.
The law of the wall holds in the logarithm layer.
For incompressible flow, the law of the wall may be
expressed as[3]:
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where k is the Karman constant, k=4.1, B=5.0,
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where u is the velocity, y the distance from the wall,
Tw the friction shear stress on the wall.

The viscous sublayer is between the wall surface
and the logarithm layer and the viscous shear stress
is dominant in that region. From the wall surface
to the logarithm layer, the total shear stress com-
posed of viscous and turbulent shear stress is nearly
constant.

Based on the above characteristics of the log-
arithm layer, asymptotic solution can be obtained
for some high Reynolds number turbulent kinetic
energy and dissipation transport equations. The
k — e and k — w models have the following wall
functions[4]:
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where 8* is a constant.
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Employing the above wall functions in the loga-
rithm layer with the range of y* typically from 30
to 150, a CFD solver with k—e and k—w turbulence
model can avoid resolving the viscous sublayer and
a part of the logarithm layer. Fig.1 shows a sketch
of a CFD grid using wall functions. The first grid

line above the wall is located within the logarithm
layer of the turbulent boundary layer. The CFD
solution covers the domain above the first grid line
and there is no solution between the wall and the
computational domain. However, with the corre-
lation of the law of the wall, eq.(3), and the wall
functions, eq.(4), the surface friction shear stress
Tw can be calculated fairly accurately as long as
the boundary layer is not separated.

Since using wall functions does not need to re-
solve the viscous sublayer, where there exists a
large velocity gradient and a very fine mesh is re-
quired, the computation is much more CPU ef-
ficient than those resolving the viscous sublayer.
This is the main reason that the wall function
methods are widely used.

According to eq.(1), the total rate of entropy
creation

T

0 1
/ TV, (5)

Ywall function

. 4 1 Ywallfunction |
S, z/ Tszde 2/ =Ty dVy+
0 0

As mentioned before, yyaiifunction is located in
the logarithm layer with y* usually in the range of
30 < yT < 150. Since there is no CFD solution
between wall and Yyaiifunction- The first term of
the integral in eq.(5) is ignored. The total rate of
the entropy creation becomes:
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According to Denton’s theory[l], the ignored
term from eq.(5) to eq.(6) generates most of the
entropy creation since the velocity increases most
rapidly from the viscous sublayer to the logarithm
layer, and the shear stress is about constant in
that region. Indeed, Zha[8] found that, when the
Ywall function varies from y* = 30 to 150, 60%
to 90% of the total rate of entropy creation is
missed according to eq.(6). Such a large discrep-
ancy should be reflected by the total pressure loss,
which is related to the entropy creation by the fol-
lowing relation:

Pty
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However, the numerical investigation did not
show such a dramatic error for the total pressure
loss when wall functions are used[8]. The puzzle



has been the motivation leading to the present pa-
per.

3 Boundary Layer Loss Mech-
anism

To study the boundary layer loss mechanism, we
will begin with the steady state boundary layer
equations[3] for a flat plate.

Continuity equation:

9(pu)
oz oy

X-momentum equation:
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Y-momentum equation:
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Energy equation:
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where u, v are the velocity component in x- and
y- direction, p the pressure, p the density, h the
static enthalpy, ¢ the heat flux, 7., the shear stress.
g and 7., may be determined as:
drT
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where k,, and u,, are the molecular thermal
conductivity and molecular viscosity, k; and p; are
the turbulent thermal conductivity and turbulent
viscosity.

Use the substantial derivative:
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and steady state flow condition,
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the energy equation combined with the y-
momentum eq. can be written as
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From the thermodynamic relation:
1
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the energy equation can be further written as:
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Multiply dy on both sides of eq.(18) and rearrange
the terms, we have
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pudy is actually the mass flow rate going

through a streamtube with the hight of dy, hence
if let

T(u
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Eq.(19) becomes
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v/u is the slope of the streamline. If assume 6 is
the angle between the streamline and z axis, then

v sin(0)
u  cos(6) (22)
Eq.(21) then becomes
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The content inside the parenthesis on the left
hand side of eq.(23) is the derivative of the entropy
along the streamline. Let [ be the length along a
streamline, then eq.(23) can be written as:

0Os cos(0) Oou 0q

For a boundary layer along a flat plate, the
streamline angle is nearly zero, that is cos(§) ~ 1.

Hence, the energy equation of a boundary layer
along a flat plate may be expressed as:
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The right hand side of eq.(25) may be simplified
by using
ou 0q
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Then we have
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The assumptions of eq.(26) are reasonable for

flat plate boundary layer even though they are not

mathematically rigorous.

Eq.(27), which is equivalent to eq.(25), says that
the local entropy creation rate along a streamtube
within a boundary layer is caused by the shear
stress work and heat flux variation. As long as
there is temperature gradient, dg and dg/dy are not
zero. Tyydu and dg have the same order of magni-
tude. That is why they are kept in the boundary
layer equations after the dimensionless analysis[3].

The total rate of the entropy creation, S'a, can

be obtained by integrating eq.(25) or (27). That is:
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where 75 stands for the total mass flow across
the boundary layer.

When wall functions are used, above formula-
tions become:
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For an adiabatic boundary layer, on the wall
surface and at the edge of the boundary layer, ¢ =
0. Hence from eq.(29), we have
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This means that the total rate of entropy cre-
ation across a boundary layer is equal to the total

shear stress work in the boundary layer, which is
the same as Denton’s conclusion, eq.(1). However,
simply extend eq.(32) to determine the local rate
of entropy creation as eq.(2) is incorrect. The local
rate of entropy creation is determined by eq.(25)
or (27). The dg in eq.(27), or g—gdy in eq.(25), has
a very important contribution to the local entropy
creation. It is just canceled out after doing the

integral across the boundary layer.

In other words, when we say that the total rate
of entropy creation across a boundary layer is equal
to the shear stress work, it is only correct in the
quantitative sense. It is misled if think it actually
occurs that way. Physically, both heat flux varia-
tion and shear stress work cause entropy creation.
These two factors always co-exist and interact each
other everywhere in the whole boundary layer.

If we now explain the applicability of wall func-
tions using eq.(28) and (25) instead of eq.(1) and
(2), it is found that the accuracy of using wall func-
tions to predict the internal flow loss is acceptable.
This will be shown in the following sections.

Even though eq.(29) and (28) may be consid-
ered as equivalent, we prefer to use eq.(28) to ana-
lyze the entropy creation in the following sections.
There are two reasons for this: 1) eq.(28) is mathe-
matically more rigorous than eq.(29); 2) the terms
in eq.(28) are well defined and are easier to calcu-
late numerically.

It needs to point out that the present deriva-
tion follows the similar strategy of Denton[1]. The
major difference is that, when we consider the lo-
cal rate of entropy creation, we start from eq.(25),
Denton started from eq.(32), which has no heat flux
variation.

4 Entropy Creation in a
Boundary Layer

An ideal gas turbulent boundary layer in an adi-
abatic flat duct is solved numerically using Flu-
ent CEFD solver to obtain the database for anal-
ysis. The duct flow has no pressure gradient. A
freestream Mach number of 0.2 is selected so that
the flow is in the incompressible regime, which will
facilitate the validation of the numerical solutions.
The duct flow with freestream Mach number of 0.95
is then computed to examine if the compressible
and incompressible boundary layers behave simi-
larly for entropy creation. The conclusion is they
behave the same. To save the space, only the
results of the incompressible turbulent boundary



layer is presented.

4.1 Solution Validation

The duct has an aspect ratio of 25. The Reynolds
number based on the duct height is Re, = 10°.
Fig.2 shows the velocity vector field near the duct
exit. The no slip adiabatic boundary conditions
are imposed on the solid wall. The mesh size is
101x81. The two equation k — € model is used
with the low Reynolds number model integrating
to the wall. The y* for the first grid adjacent to
the wall is, y§ = 1.8. Even though we want to
study the entropy creation predicted by using the
wall functions, the benchmark solution needs to be
integrated to the wall so that the whole boundary
layer profile can be obtained. The solutions with
wall function boundary conditions are a subset of
the solution integrated to the wall. Hence the eval-
uation of using the wall functions will be still based
on the results from the solution integrated to the
wall.

A duct cross section close to the duct outlet is
chosen for analyzing the turbulent boundary layer
profiles. The Reynolds number based on the mo-
mentum thickness at that location is Rey = 3584.5,
the shape factor H = 1.34. The velocity profile of
the inner layer is compared with the law of the wall
using the formulation of Spalding[3]. Fig.3 shows
that the computed velocity profile agrees very well
with the law of the wall.

The dissipation coefficient, C'd, is integrated ac-
cording to the following definition:
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There is little difference if S is integrated as in
eq.(1), that is
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The computed value of Cd is, Cd = 0.001463,
which agrees very well with the value of 0.001432
calculated by using the correlation given in [9]:

Cd = 0.0056Re, */° (36)

As aforementioned, the variation of the heat
flux is crucial to determine the local rate of en-

tropy creation. Therefore, the accuracy of the tem-
perature profile is very important. Fig.4 shows
that the computed temperature profile agrees ex-
cellently with that given by Crocco-Busemann
formulation([3], which is

u  0.88u?
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(37)

This formulation was obtained with the assumption
of Pr = Pry = 1, which is close to the ideal gas used
in the current case. For the adiabatic boundary
layer in the present case, the wall temperature is
equal to the adiabatic wall temperature. Hence the
second term in eq.(37) is canceled. The boundary
layer ends at about yt = 1650. Therefore fig.4
is the temperature profile for the whole boundary
layer.

Above results indicate that the present numer-
ical solution resolves the turbulent boundary layer
fairly accurately, which is sufficient to provide the
database for further entropy creation analysis.

4.2 Entropy Creation Analysis

First, let us see fig.5, which is the distribution of
the local entropy creation due to the shear stress
work. According to Denton’s definition given in
eq.(2), this is the local rate of entropy creation.
The total area under the curve is the total rate
of entropy creation across the boundary layer as
defined in eq.(1), or eq.(32). Similar plot is also
presented in[1]. As pointed out by Denton[1], most
of the entropy creation occurs in the inner layer.
For the present case at y+ = 30, it takes about
62% of the total area. For yT = 107, it is 78% of
the area. Obviously, inferred from Denton’s theory,
the wall functions located in the logarithm layer
with 30 < y* < 150 will miss most of the entropy
creation, or the loss prediction.

Now, let us see the contribution of the local en-
tropy creation from the two terms of eq.(25) and
their resultant as shown in Fig.6. The dash line is
Tzydu/dy vs y, which is the same curve as fig.5, but
in a slightly different variable form. We drop 1/T
here for simplicity since T is relative constant com-
pared with the variation of 7,,du/dy and dq/dy.
Fig.7 shows the zoomed part of fig.6 near the wall.
Tzydu/dy has very large value near the wall due to
the large velocity gradient. This again shows that
the near wall region takes most of the area under
the dash line as indicated in fig.5.

However, the heat flux gradient near the wall is
also very large and is in the same order of magni-
tude as the shear stress work. The large rate of en-



tropy creation due to 7,,du/dy is offset by the heat
flux gradient. On the wall surface, the 7,,du/dy is
greater than the dg/dy and results in the maxi-
mum entropy creation rate on the wall surface(see
fig.7). Above the viscous sublayer, the dg/dy in-
creases more rapidly than the 7,,du/dy and cre-
ates a local negative valley of the rate of entropy
creation very close to the wall with the yT from
about 5 to 20 (the solid line). This means that
the inner layer is not the region that most of the
entropy is created.

The solid line in fig.6 shows that the resultant
local rate of entropy creation (eq.(25)) is fairly uni-
form for most part of the boundary layer except
near the wall and gradually reduce to zero at the
edge of the boundary layer. Through the whole
boundary layer, the 7,,du/dy and dg/dy have the
same order of magnitude. The integral of the total
rate of entropy creation is the area under the solid
line according to eq.(28). This area is equal to area
of fig.5 quantitatively. It is also equal to the area
under the dash line in the same plot of fig.6. How-
ever, it can be seen that the area distribution of
the solid line is much more uniform than fig.5 and
the dash line across the boundary layer in fig.6.

For the integral of the total rate of entropy cre-
ation, the negative area of the local rate of entropy
creation (solid line) will cancel a part of the posi-
tive area (see fig.7). In other words, there exists
one point on the right side of the negative val-
ley, from which the integrated area will be equal
to the total area integrated from the wall surface
under the solid line. Let this point be termed as
balance point. The estimated location of the bal-
ance point is between y™ =25 to 30 according to
the numerical results. This means if the wall func-
tion location starts from the balance point, the to-
tal rate of entropy creation is quantitatively the
same as integrating from the wall. The offset of
the 7,ydu/dy and dg/dy near the wall dramatically
reduce the dependence of the total rate of entropy
on the near wall region. This means that, if wall
function boundary conditions are used in the inner
layer, the total rate of entropy creation estimated
by eq.(30) will have much less error than that esti-
mated solely from the shear stress work as in eq.(6).
The correct quantitative loss prediction can be ob-
tained if the wall function location is at the balance
point.

To understand the behavior of dg/dy, we can
see the heat flux distribution across the adiabatic
boundary layer as shown in fig.8. The heat flux is
determined according to eq.(12). On the wall sur-
face, the heat flux ¢ = 0. The heat flux then rapidly
increase with very large gradient and reaches the

peak at about yt = 250. Such a large gradient is
attributed to two factors: 1)the large temperature
gradient near the wall as shown in fig.4; 2) the large
increase of the turbulent thermal conductivity near
the wall. The positive heat flux gradient near the
wall has the effect to offset the entropy creation
rate due to the large velocity gradient as shown in
fig.7. After the peak (see fig.8), the heat flux grad-
ually reduce to zero at the edge of the boundary
layer with negative gradient, which has the posi-
tive contribution to the rate of entropy creation.
As shown in fig.6, for the outer layer of the bound-
ary layer layer, the negative heat flux gradient is
the dominant contributor to the entropy creation.
Through out the whole boundary layer, the shear
stress work and heat flux gradient compensate for
each other and make the distribution of the local
entropy creation fairly uniform. In summary, in
the inner layer, the heat flux ¢ has positive gra-
dient that reduces the local entropy creation rate.
In the outer layer, the heat flux has the negative
gradient that increases the local entropy creation
rate.

As explained for eq.(32), because ¢ = 0 on the
wall surface and at the edge of the boundary layer,
the integral of the heat flux gradient across the
whole boundary layer is zero. That is the area un-
der the dash-dot-dot line in fig.6 is zero. In other
words, the integral of the heat flux gradient across
the boundary layer does not have a net contribution
to the total rate of entropy creation. Again, this
is only correct in the quantitative sense. The heat
flux gradient makes the local entropy creation more
uniform through out the boundary layer. If the in-
tegral of the total rate of entropy creation does not
start from the wall surface as in eq.(30) when wall
functions are used, the integral of the heat flux will
not be zero because ¢ # 0 at Yuaiifunction- In fact,
it has a dominant contribution to the total rate of
entropy creation.

4.3 Entropy Creation Rate with
Wall Functions

With the above analysis, we can examine the effect
of using wall functions on the total rate of entropy
creation rate. To clearly see the contribution of
each term, the integral of shear stress work and
heat flux gradient of eq.(30) are separated as the
following:
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Eq.(38) can be normalized by pou2/T,. That is:
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Obviously, Cd, Ch and S, will vary with the
location of the Ywauifunction. Fig.9 shows such vari-
ations. The dash-dot-dot line is the total rate of
entropy creation integrated from the wall surface
as defined in eq.(28).

When integrated from the wall surface, as ex-
plained for eq.(32), the following results are ex-
pected:

S,~Cd, Ch=0 (42)

The following are the values obtained

- Cd = 0.00146343, Ch = -0.00000553,
Sq = Cd— Ch = 0.00146896.

~ The dash-dot-dot line in fig.9 has the value of
S,, which is used as the benchmark solution for
comparison.

Ywall function Needs to be located in the loga-
rithm layer and is usually in the range of y= =30
- 150. Fig.9 shows that when y ;- 1io, varies
from 30 to 170, Cd alone is significantly lower than
the benchmark total rate of the entropy creation.
When the contribution of Ch is added, the com-
puted total rate of entropy creation using wall func-
tions, the solid line, is very close to the benchmark
solution. In particular, if the yf;a” Function 1@ the
low value such as 30, the difference of the computed
total rate of entropy creation from the benchmark
solution is negligible. The contribution due to C'h
is about twice larger than the shear stress work,
Cd, at Y runction = 30 and five times larger at

= 150.

ywallfunction

Fig.10 shows the quantitative error of the com-
puted total rate of entropy creation at different

Ywall function- 1f only the shear stress work is con-
sidered as the total rate of entropy creation given
in eq.(6), the error is from 62% to 82% when the
Yaall function Varies from 30 to 170. When the heat
flux gradient is added, the error is dramatically re-
duced to 0.34% to 7.8%. For loss prediction in en-
gineering application, this error range is within the
prediction uncertainty and is acceptable. In partic-
ular, if the wall functions are used at y™ about 30,
the difference of the loss prediction between using
wall functions and integrating to the wall is negli-
gible. The reason that the error is so small at y+ =
30 is because it is close to the balance point located
between yT = 25—30. As aforementioned, the total
rate of entropy creation is quantitatively correct if
the wall functions are located on the balance point.

We may draw two conclusions form these re-
sults:

1) the local rate of entropy creation should in-
clude two terms, the shear stress work and heat flux
gradient for the adiabatic boundary layer. The def-
inition with shear stress work only given by Den-
ton in eq.(2) neglects a very important contribution
from the heat flux gradient.

2) with the new understanding of the en-
tropy creation mechanism in an adiabatic bound-
ary layer, the wall function method is proved to be
acceptable to predict internal flow loss under the
condition that the boundary layer is not separated.

The following speculation may be inferred from
above conclusions: For incompressible flow compu-
tation, sometimes the energy equation is not solved
when the temperature filed is not of the interest.
In this case, if wall functions are used, the loss pre-
diction may have a large discrepancy because the
entropy creation due to the heat flux gradient is
not available. This topic is beyond the scope of
this paper and needs to be studied separately.

A case of compressible flow with Mach number
of 0.95 for the duct shows the same behavior as the
incompressible case, both qualitatively and quan-
titatively. To save space, the results of the Mach
0.95 case is not shown here.

5 Comparing Cascade Solu-
tions Using Wall Functions
and Integrating to Wall

A simple transonic cascade flow is calculated to
compare the loss prediction using wall functions
and integrating to the wall. The purpose is to ex-



amine if the error range of the loss prediction falls
within the theoretical range given in the previous
analysis.

The example is a 2D cascade with NACA0012
airfoil. The solidity is 1.0, inlet Mach number is
0.51, Reynolds number based on chord is 0.97 x 108,
incidence angle is zero.

The Fluent software and the k — ¢ model are
again used to provide the CFD solutions. Two so-
lutions are obtained. The first solution is the the
benchmark solution resolving the boundary layer
to the wall surface. The second solution uses wall
function boundary conditions to treat the wall.
The solutions are then compared for their loss pre-
diction.

The code is validated for the same 2D duct flow
in previous section by using wall functions. The
velocity profile agrees very well with the law of the
wall starting from the logarithm region. The tem-
perature profile also agrees well with the Crocco-
Busemann formulation. To save space, the valida-
tion results for the 2D duct boundary layer using
wall functions are not presented here.

Fig.11 shows the grid of the cascade for the solu-
tion using wall functions. The hybrid grid is used.
The body fitted hexahedral O-mesh is used around
the airfoil to resolve the boundary layer. Outside
of the boundary layer mesh is the tetrahedral mesh
to reduce the number of the mesh cells. The mesh
generation is designed to try to make the two grids
have the same grid density in the same region, if
possible. The same O-mesh area is used for both
the meshes. Along the airfoil surface there are to-
tally 230 mesh points for both solutions. The num-
ber of the mesh points on the periodic boundaries,
inlet and outlet are the same for the two solutions.
This will make the number of mesh cells the same
for both solutions outside of the O-mesh area.

The only difference for the meshes of the two
solutions are the number of grid points normal to
the blade surface inside the O-mesh domain. For
the solution integrating to the wall, the y;" from
the leading edge to trailing edge varies from 1.6 to
0.2. For the solution with wall function, the y;
varies from 160 to 50. Therefore, the first solution
needs to have more grid points than the second so-
lution in the direction normal to the wall. There
are totally 60 grid points in the direction normal
to the wall for the first solution. Among them,
25 are between the wall surface and the wall func-
tion location of the second solution. There are 35
points between the wall function location and the
O-mesh boundary. For the second solution using
wall functions, between the wall function location

and the O-mesh boundary, the maximum number
of grid points that can fit in the space is 30 when
the minimum stretching factor f=1.0 is used. That
means that there are 5 points less than the solution
integrating to the wall between the wall function
location and O-mesh boundary. Since in the outer
layer the boundary layer gradient is much less than
the inner layer, 30 points is sufficient to resolve the
outer layer and little difference is expected between
using 30 and 35 points.

Fig.12 is the Mach number contours of the two
solutions, the top one is the solution using wall
functions, and the bottom one is the solution inte-
grating to the wall. It shows that there is a normal
shock in the aft airfoil region. The Mach number
before the shock is 1.24 and the shock is not strong
enough to cause a flow separation. Hence this is
a good case to compare the loss prediction of the
wall function methods. There is no distinguishable
difference for the Mach contours of these two solu-
tions.

Fig.13 is the static pressure distributions for the
two solutions. Again, they agree excellently. The
static pressure distributions indicate that the flow
is accelerated to supersonic, and then is deceler-
ated by the normal shock to subsonic, then further
diffused to the cascade exit. Fig.14 is the total
pressure distributions in the wake region % chord
downstream of the trailing edge. The wake width
and depth agree very well for these two solutions.
The wake of the wall function solution is slightly
deeper than the one integrating to the wall. The
total pressure loss is 3.66% for the solution inte-
grating to the wall , and 3.63% for the solution
using wall functions. The difference is 0.8%, which
is small and is in the error range of the previous
analysis.

To see the details of the flow field difference inte-
grating to the wall and using wall functions, fig.15
shows the zoomed mesh in the region of the trail-
ing edge for the solution integrating to the wall.
The mesh is very dense near the wall to resolve
the inner layer. The first mesh has the y* = 0.2.
Fig.16 is the velocity vector in the trailing edge re-
gion. Even though the trailing edge radius is small,
there are still two counter rotating vortices gener-
ated due to the low base pressure above and below
the symmetric line.

Fig.17 is the mesh imposed with the velocity
vector field in the region of the trailing edge for
the solution using wall functions. The first mesh
has the y* = 50. Obviously, the grid spacing is
much larger than the first solution and there is no
mesh to resolve the viscous sublayer. No detailed



trailing edge vortices are resolved. However, ne-
glecting these details does not really reduce the ac-
curacy of the loss prediction as shown in the wake
profile (fig.14) and the small difference of the loss
prediction value, 0.8%. According to the new un-
derstanding of the loss mechanism in the boundary
layer, it is explainable that such a good loss pre-
diction using wall functions is due to the entropy
creation balanced by the shear stress work and the
heat flux gradient in the boundary layer.

6 Conclusions

The mechanism of entropy creation in an adiabatic
boundary layer is studied. The local entropy cre-
ation rate has two sources: shear stress work and
heat flux gradient. These two factors have the same
order of magnitude everywhere in the boundary
layer. Their balance results in a fairly uniform dis-
tribution of entropy creation rate across the bound-
ary layer. In the inner layer region, the large rate
of entropy creation due to the velocity gradient and
shear stress is offset by the gradient of the heat flux.
The heat flux gradient is so large that a negative
entropy creation region is generated in the inner
layer. Theoretically, there exists a balance point in
the inner layer. If the wall functions are located
at the balance point, the loss prediction using wall
functions and integrating to the wall will be the
same. With the new theory of the entropy creation
mechanism, the study justifies that the wall func-
tion methods are applicable to internal flow loss
prediction. For a Mach 0.2 adiabatic boundary
layer in a 2D duct with no pressure gradient and
no separation, the error of the total rate of entropy
creation varies from 0.34% to 7.8% when the wall
functions are applied at yT = 30 — 170. This error
is within the engineering application uncertainty.
The compressible flow case of Mach 0.95 shows the
same behavier as the incompressible case.

The previous theory of entropy creation mecha-
nism in a boundary layer given by Denton does not
include the heat flux gradient factor. The sole con-
tribution to the local entropy creation rate is the
shear stress work. Using Denton’s theory to study
the applicability of wall function methods for in-
ternal flow loss prediction will lead to a very large
unacceptable error in the range of 60% to 80%. Ac-
cording to the new theory developed in this paper,
such a large error is false and is due to ignoring the
heat flux gradient contribution to the local rate of
entropy creation.

The numerical solutions of a transonic cascade
using wall functions and integrating to the wall are
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compared. The wake profiles of these two solu-
tions agree very well. The difference of the loss
prediction using these two methods is small and is
consistent with the error range given from the loss
mechanism theory of this paper.

From the new loss mechanism theory, the fol-
lowing speculation may be inferred, but not proved:
For incompressible flow computation, if the energy
equation is not solved and the wall functions are
used, the loss prediction may have a large discrep-
ancy because the entropy creation due to the heat
flux gradient is not available. This topic is beyond
the scope of this paper and is not studied herein.
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Figure 11: Mesh for the NACA0012 cascade solu-
tion integrating to the wall.

Figure 12: Mach number contours of the cascade,

top:

using wall functions; bottom: integrating to

the wall.
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