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Abstract

A new efficient upwind scheme based on the concept of
convective upwind and split pressure (CUSP) is devel-
oped. The upwinding of the convective term and the
pressure split are consistent with their characteristic di-
rections. The scheme has low diffusion to accurately re-
solve wall boundary layers, and are able to capture crisp
shock waves and exact contact discontinuities. The ac-
curacy of the scheme is compared with other popularly
used schemes including Roe scheme, Liou’s AUSM+

scheme, Van Leer scheme, and Van Leer-Hänel scheme.
The scheme is tested for the 1D Sod shock tube prob-
lem, 1D slowly moving contact surface, supersonic flat
plate laminar boundary layer, a transonic nozzle with
oblique shock waves and reflections that do not align
with the mesh lines, and a transonic inlet diffuser with
shock wave/turbulent boundary layer interaction. The
test cases show that the new scheme is accurate, robust
and efficient.

1 Introduction

Development of an accurate and efficient numerical
scheme for compressible flow governing equations is es-
sential due to the increasing engineering demand for
aircraft and spacecraft design[1]. Such a scheme is par-
ticularly important when aircraft engine turbomachin-
ery aeroelasticity problems are simulated using a fully
coupled fluid/structural model, which is usually very
CPU intensive. Hence an accurate, efficient and robust
upwind scheme used as the Riemann solver to resolve
shock waves, contact surface discontinuities and wall
boundary layers is very desirable.

To achieve the purpose of efficiency and accuracy,
efforts have been made to develop upwind schemes
only using scalar dissipation instead of matrix dissipa-
tion such as that of the Roe’s flux difference splitting
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(FDS) scheme [2]. The examples include AUSM family
schemes of Liou represented by their latest scheme of
AUSM+[3, 4, 5, 6, 7], the Van Leer-Hänel scheme[8],
Edwards’s LDFSS schemes[9, 10], Jameson’s CUSP
schemes and limiters[11, 12, 13], and the schemes de-
veloped by Zha, et al.[14, 15, 16], etc.

Pioneered by Liou and Steffen[3, 5, 6], the re-
searchers seeking the scalar dissipation primarily fol-
low the guideline that the velocity and pressure should
be separated to consider their characteristics represent-
ing the physics of the convection and waves. Liou and
his colleagues termed their schemes as advection up-
stream splitting method(AUSM) schemes, and Jameson
gave the name of convective upwind and split pressure
(CUSP) schemes[11, 12, 13]. The name of CUSP seems
more precisely reflecting the physical meaning.

As pointed out by Jameson[11, 12, 13], the CUSP
schemes can be basically categorized to two types, the
H-CUSP and E-CUSP. The H-CUSP schemes has the
total enthalpy from the energy equation in their con-
vective vector, while the E-CUSP schemes use the total
energy in the convective vector. The Liou’s AUSM fam-
ily schemes, Van Leer-Hänel scheme[8], and Edwards’s
LDFSS schemes[9, 10] belong to the H-CUSP group.
The H-CUSP schemes may have the advantages to bet-
ter conserve the total enthalpy for steady state flows.
The schemes developed by Zha[14, 15] belong to the
E-CUSP group. Jameson suggested schemes for both
groups[11, 12, 13].

Even though the H-CUSP schemes such as AUSM
family schemes have achieved great success, from the
characteristic theory point of view, the schemes are not
fully consistent with the disturbance propagation di-
rections, which may affect the stability and robustness
of the schemes. By splitting the eigenvalues of the Ja-
cobians to convection (velocity) and waves (speed of
sound), one will find that the convection terms only
contain the total energy[14], which will lead to the E-
CUSP schemes. However, the early E-CUSP schemes
could not handle contact discontinuities[11, 12, 13, 14].
Borrowing from AUSMDV scheme[4], Zha used the in-
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terface speed of sound and made his E-CUSP scheme
able to capture exact contact discontinuities. How-
ever, due to lacking the proper numerical dissipation,
the scheme will generate odd-even pressure oscillations
when applied to multi-dimensional flows.

The purpose of this paper is to develop a high resolu-
tion E-CUSP scheme that is consistent with the charac-
teristic directions, and is also accurate, efficient, and ro-
bust. The high resolution means that it can accurately
resolve the wall boundary shear layers, shock wave and
contact discontinuities.

2 The Numerical Scheme

2.1 Governing Equations

To describe the new scheme, we will begin with the
quasi-1D Euler equations in Cartesian coordinates for
inviscid flow:

∂tU+ ∂xE−H = 0 (1)

where U = SQ, Q =





ρ
ρu
ρe



, E = SF,

F =





ρu
ρu2 + p
(ρe+ p)u



 , H =
dS

dx





0
p
0



 (2)

In above equations, ρ is the density, u is the velocity,
p is the static pressure, e is the total energy per unit
mass and S is the cross sectional area of the 1D duct.
The following state equation is also employed:

p = (γ − 1)(ρe−
1

2
ρu2) (3)

where γ is the specific heat ratio with the value of 1.4
for ideal gas.

The finite volume method with the explicit Euler
temporal integration is used to discretize the govern-
ing equations. It yields the following formulation at
cell i:

∆Qn+1
i = ∆t[−C(Ei+ 1

2

−Ei− 1

2

) +
Hi

Si
]n (4)

where C = 1/(∆xSi), n is the time level index. A
numerical scheme is needed to evaluate the interface
flux:

Ei+ 1

2

= SFi+ 1

2

(5)

2.2 Characteristics

To develop the scheme for Fi+ 1

2

, we need to analyze the
characteristics first. It is well known that the eigenval-
ues of the Jacobian matrix are u + a, u, u − a. That
is

A =
∂F

∂Q
= TΛT−1 (6)

where T =





1 1 1
u− a u u+ a
H − ua 1

2
u2 H + ua



 and

Λ =





u− a 0 0
0 u 0
0 0 u+ a



.

Due to the homogeneous relationship between Q and
F, we have

F = TΛT−1Q (7)

The Steger-Warming scheme[17] and Roe scheme[2]
are directly based on above characteristic relations. For
supersonic flows, all the eigenvalues are positive and a
numerical scheme can simply take the upwind differenc-
ing. The difficulty in constructing a Riemann solver for
interface flux F appears in the subsonic regime, where
the acoustic waves propagate in both downstream and
upstream directions. To separate the convective terms
and wave terms, the eigenvalue matrix may be split as
the following[14]:

F = T





u 0 0
0 u 0
0 0 u



T−1Q+T





−a 0 0
0 0 0
0 0 a



T−1Q

= Fc + Fp (8)

where

Fc = u





ρ
ρu
ρe



 ,Fp =





0
p
pu



 (9)

Obviously, the vector Fc has the eigenvalues of ve-
locity and hence is the convective terms. The vector
Fp has the eigenvalues of speed of sound which repre-
sents the acoustic waves propagating in each direction
at subsonic regime. Above relations will lead to the so
called E-CUSP schemes that has the total energy term
in the convective vector, Fc.

Based on the above separation of convective and wave
terms in subsonic regime, Zha et al.[14, 15, 16] sug-
gested to treat the convective term Fc in a simple
upwind manner and to average the wave term Fp in
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both upwind and downwind direction with the weight
of u± a.

The H-CUSP schemes absorb the pressure term in
the energy equation of Fp into the convective vector in
terms of the total enthalpy. The convective vector and
wave vector hence become:

F′
c
= u





ρ
ρu
ρH



 , F′
p
=





0
p
0



 (10)

where H is the total enthalpy

H =
ρe+ p

ρ
(11)

The eigenvalues of F′
c
are (u, u, γu), and the eigen-

values of F′
p
are [0, 0,−(γ − 1)u][12]. These eigenval-

ues mean that the pressure vector F′
p
only has down

wind propagation, which does not reflect the true wave
propagation and the vector is hence not strictly the
wave vector. Most of the H-CUSP schemes such as the
AUSM family schemes of Liou[3, 4, 5, 6, 7] average the
pressure term F′

p
in both upwind and downwind di-

rection with the weight of u± a. Obviously, this is not
consistent with the characteristics of F′

p
, which only

has the downwind direction. Even though the upwind-
ing treatment of the vector F′

c
is justified according to

its eigenvalues, the vector is not strictly the convective
vector due to absorbing the pressure term in the energy
equation.

2.3 The New E-CUSP Scheme

The new scheme is to develop a E-CUSP scheme that
is consistent with the characteristic directions. Based
on the characteristics of the vector Fc and Fp, Zha and
Bilgen suggested a simple flux vector splitting scheme
as the following at subsonic regime[14]:

F 1

2

=
1

2
[Fc

L + Fc
R]−

1

2
[(|u|Q)R − (|u|Q)L]

+
1

2
[





0
p(1 +M)
p(u+ a)





L

+





0
p(1−M)
p(u− a)





R

]. (12)

For supersonic flow, it switches to fully upwind
scheme.

This scheme treats the convective vector Fc in an
upwind manner and the pressure vector Fp with the
eigenvalue u±a weighted average from both the upwind
and downwind directions. The pressure vector natu-
rally transits to fully upwind in the supersonic regime.
Most of the numerical dissipation terms of this scheme

vanishes with the velocity approaching zero. By us-
ing the common interface speed of sound as suggested
by Wada and Liou[4], the scheme can handle exact
contact discontinuities[16]. However, due to lacking
of the proper numerical dissipation, the scheme gener-
ates odd-even pressure oscillations when used for multi-
dimensional flows.

To suppress the oscillations, the way to introduce the
dissipation used by Wada and Liou for their AUSMD
scheme [4] is borrowed to construct the convective term.
First, the velocity u+

L and u−R are introduced as the
following:

u+
L =

a 1

2

{
ML + |ML|

2
+αL[

1

4
(ML+1)2−

ML + |ML|

2
]} (13)

u−R =

a 1

2

{
MR − |MR|

2
+ αR[−

1

4
(MR − 1)2 −

MR − |MR|

2
]}

(14)

where the interface speed of sound a 1

2

, Mach number,
and α are evaluated as:

a 1

2

=
1

2
(aL + aR) (15)

ML =
uL

a 1

2

, MR =
uR

a 1

2

(16)

αL =
2(p/ρ)L

(p/ρ)L + (p/ρ)R
, αR =

2(p/ρ)R
(p/ρ)L + (p/ρ)R

(17)

An interface mass flux is introduced as the following:

(ρu) 1

2

= (ρLu
+
L + ρRu

−

R) (18)

Then the convective vector Fc is evaluated as:

Fc =
1

2
[(ρu) 1

2

(qc
L + qc

R)− |ρu| 1
2

(qc
R − q

c
L)] (19)

where

qc =





1
u
e



 (20)

The pressure term in the momentum equation uses
the pressure splitting formulations of AUSM+[5].

p 1

2

= (P+p)L + (P−p)R (21)

where

P± =
1

4
(M ± 1)2(2∓M)± αM(M2 − 1)2, α =

3

16
(22)
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The pressure splitting in the energy equation uses the
simple linear eigenvalues weighted average:

(pu) 1

2

=
1

2
[p(u+ a 1

2

)]L +
1

2
[p(u− a 1

2

)]R (23)

The energy pressure term may also use the higher
order polynomial such as the Van Leer’s Mach number
splitting

(pu) 1

2

=
1

4
a 1

2

[p(M + 1)2]L −
1

4
a 1

2

[p(M − 1)2]R (24)

However, the numerical experiments indicated that
eq.(24) is less robust and may generate oscillatory so-
lutions. Hence the linear pressure splitting of eq.(23) is
adopted. The drawback of the linear pressure splitting
of eq.(23) is that the first order derivative is not contin-
uous at the sonic point similar to the Steger-Warming
scheme[17]. This may cause some non-smoothness
at the sonic point when first order scheme is used.
When higher than first order scheme is used, the non-
smoothness disappears[16].

In summary, the new E-CUSP scheme can be written
as the following:

For |u| ≤ a,

F 1

2

=
1

2
[(ρu) 1

2

(qc
L + qc

R)− |ρu| 1
2

(qc
R − q

c
L)]

+





0
P+p

1
2
p(u+ a 1

2

)





L

+





0
P−p

1
2
p(u− a 1

2

)





R

(25)

For u > a, F 1

2

= FL; For u < −a, F 1

2

= FR

where the definitions of the different terms are given
as the following: eq.(18) for (ρu) 1

2

, eq.(20) for qc,

eq.(22) for P±, eq.(15) for a 1

2

, and eq.(16) for Mach
number. The definitions of the Mach number and the
interface speed of sound are essential to capture the
exact contact discontinuities.

3 Numerical Dissipation

The low numerical dissipation at stagnation is impor-
tant to accurately resolve wall boundary layers. The
Liou’s AUSM+ scheme has all the numerical dissipa-
tion terms vanishing when the velocity approaches zero,
which hence yields low numerical dissipation for wall
boundary layers. For the new E-CUSP scheme, almost
all of the numerical dissipation terms vanish with the
velocity approaching zero, except one term in the en-
ergy equation due to the pressure splitting, eq.(23).

Assuming u = 0, the numerical dissipation vector of
the new E-CUSP scheme at stagnation is:

D = −
a 1

2

2





0
0
δp



 (26)

where
δp = pR − pL (27)

The numerical dissipation of the Roe scheme at stag-
nation is:

DRoe = −
ã 1

2

2(γ − 1)





(γ − 1)/ã2
1

2

δp

0
δp



 (28)

where the˜stands for the Roe’s average[2].

Comparing eq.(26) and (28), it can be seen that the
numerical dissipation of the new E-CUSP scheme for
the continuity equation vanishes at u = 0 while the
Roe scheme has the non-vanishing dissipation. For the
energy equation, the two schemes have equivalent dis-
sipation. For ideal gas with the γ = 1.4, the coefficient
of the Roe scheme energy dissipation term is 2.5 times
larger than that of the new E-CUSP scheme.

In conclusion, even though there is one non-vanishing
numerical dissipation term in the energy equation for
the new E-CUSP scheme, the overall numerical dissipa-
tion of the new E-CUSP scheme is not greater than that
of the Roe scheme. The Roe scheme is proved to be ac-
curate to resolve wall boundary layers[18]. It is hence
expected that the new E-CUSP scheme should also have
sufficiently low dissipation to accurately resolve wall
boundary layers. This is indeed the case shown by the
numerical experiment for a flat plate boundary layer.

4 Extension to Multi-

Dimensions

The 3D Navier-Stokes equations in conservation law
form and in generalized coordinates is given as,

∂Q′

∂t
+

∂E′

∂ξ
+

∂F′

∂η
+

∂G′

∂ζ
=

∂R′

∂ξ
+

∂S′

∂η
+

∂T′

∂ζ
(29)

Where Q′ is the conservative variable vector,
E′,F′,G′ are the inviscid flux vectors in ξ, η, ζ direc-
tions, andR′,S′,T′ are the viscous flux vectors in ξ, η, ζ
directions, which are determined by the Reynolds aver-
age process to model the turbulence. To save the space,
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the contents of the viscous fluxes will not be given here
and can be found in the standard CFD text books.

Q′ and E′ are given below:

Q′ =
1

J













ρ
ρu
ρv
ρw
ρe













, E′ =













ρU
ρuU + lxp
ρvU + lyp
ρwU + lzp
(ρe+ p)U













(30)

Where J is the transformation Jacobian, u, v, w are
the velocity components in x, y, z direction, U is the
normal contravariant velocity in ξ direction:

U = V · l = ulx + vly + wlz (31)

The vector l is the control volume interface area vec-
tor pointing in the direction normal to the interface
with the magnitude equal to the interface area. Let
∆ξ = ∆η = ∆ζ = 1 and then l is expressed as the
following:

l = lxi+ lyj+ lzk =
1

J
(ξxi+ ξyj+ ξzk) (32)

The flux of F′ and G′ can be obtained similarly fol-
lowing the symmetric rule in η and ζ direction.

When the control volume method is used, the dis-
cretized governing equation (29) can be rewritten as
the following integral form,

∂

∂t

∫

Q′dξdηdζ + (E′i+1/2 −E
′
i−1/2)

+(F′j+1/2 − F
′
j−1/2) + (G′k+1/2 −G

′
k−1/2) =

(R′i+1/2 −R
′
i−1/2) + (S′j+1/2 − S

′
j−1/2)

+(T′k+1/2 −T
′
k−1/2) (33)

Using the new CUSP scheme, the interface flux E′ 1
2

is evaluated as the following:

For |U | ≤ a,

E′ 1
2

=
1

2
[(ρU) 1

2

(qc
L + qc

R)− |ρU | 1
2

(qc
R − q

c
L)]

+













0
P+plx
P+ply
P+plz

1
2
p(U + a 1

2

)













L

+













0
P−plx
P−ply
P−plz

1
2
p(U − a 1

2

)













R

(34)

For U > a, E′ 1
2

= E′L; For U < −a, E′ 1
2

= E′R

where,

qc =













1
u
v
w
e













(35)

(ρU) 1

2

and P± are evaluated using eq.(13)-(18) and

eq.(22) with u replaced by U .

Equation (3) is updated to include velocity u, v, w,

p = (γ − 1)[ρe−
1

2
ρ(u2 + v2 + w2)] (36)

5 Results and Discussion

The new E-CUSP scheme will be compared with sev-
eral other popularly used upwind schemes to study its
performance. According to Godunov[19], when there
are discontinuities in the solutions, monotone behav-
ior of a solution can not be assured for finite difference
method with higher than first order accuracy. Hence,
for an upwind scheme to be used as a Riemann solver,
it is essential to examine the performance of the scheme
using first order accuracy. For the following test cases,
all the 1D cases and the 2D flat plate laminar bound-
ary layer use 1st order accuracy. The transonic nozzle
and inlet-diffuser use 3rd order accuracy for the invis-
cid fluxes with MUSCL-type differencing[20] and the
Minmod limiter.

5.1 Shock Tubes

For shock tube problems, the interests are focused
on: 1) the quality (monotonicity and sharpness) of
the shock and contact discontinuities; 2)the maximum
allowable CFL number to be used for explicit Euler
method.

For explicit Euler time marching scheme, it is desir-
able that the CFL number is close to the upper limit
of 1.0. For the 1D linear wave equation with CFL=1
and 1st order upwind scheme, the numerical dissipation
and dispersion vanish. For nonlinear Euler equations,
it is also true that the closer the CFL to 1.0, the less
the numerical dissipation.

5.1.1 The Sod Problem

Fig. 1 to 5 are the computed temperature distributions
using different upwind schemes with first order accu-
racy compared with the analytical result of the Sod
problem[21]. Since the computation stops before the
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waves reach either end of the shock tube, the first or-
der extrapolation boundary conditions are used at both
ends of the shock tube for all the schemes.

The maximum allowable CFL number for a scheme
is defined as: beyond which the solution will either be
oscillatory or unstable. The new E-CUSP scheme (Zha
CUSP in the figures) achieves maximum CFL of 1.00,
and the shock profile is the crispest and remains mono-
tone (Fig.1). The maximum allowable CFL of Roe and
Van Leer scheme are 0.95 and 0.96 respectively. The
new E-CUSP scheme takes three grid points across the
shock wave, while the Roe and Van Leer schemes take
four grid points (see Fig.1, 2 and 3). The Van Leer
scheme generates a tail at the end of the expansion wave
(see Fig. 3). Interestingly, the Van Leer-Hänel scheme
can reach maximum CFL =1.0 and the shock profile
is also crisper than the original Van Leer scheme with
no tail generated at the end of the expansion wave (see
Fig. 4). All the schemes smear the contact surface to
a similar extent. The expansion wave is captured well
by all the schemes. The AUSM+ scheme has the un-
expectedly low maximum allowable CFL of 0.275. The
whole shock and contact surface profiles are seriously
smeared due to the low maximum CFL number.

The table 1 given below summarizes the maximum
allowable CFL number for each scheme. Overall, for
the Sod 1D shock tube problem, the new scheme sug-
gested in this paper performs the best based on the
shock sharpness, monotonicity, and stability.

Table 1: Maximum CFL Numbers for Sod 1D Shock
Tube

Scheme CFL Number
The new scheme (Zha CUSP) 1.00
Van Leer-Hänel 1.00
Van Leer 0.96
Roe 0.95
Liou AUSM+ 0.275

5.1.2 Slowly Moving Contact Surface

This is a shock tube case used in [4] to demonstrate the
capability of the scheme to capture the contact surface.
The initial conditions are [ρ, u, p]L = [0.125, 0.112, 1.0],
[ρ, u, p]R = [10.0, 0.112, 1.0] . All the results are first
order accuracy. Fig. 6 shows that the new E-CUSP
scheme , the Roe scheme and the AUSM+ scheme all
can resolve the contact surface accurately as they are
designed. The results of those schemes are at time level
0.01. The velocity is uniformly constant and the den-
sity discontinuity is monotone. The new E-CUSP (Zha
CUSP) scheme has far higher CFL number than the

other schemes with the value of 1.00. The Roe scheme
has the max CFL=0.3, and Liou’s AUSM+ has 0.48.
Fig.7 shows that the Roe scheme generates large veloc-
ity oscillations when CFL=0.35, greater than its max
CFL=0.3.

The schemes of Van Leer, Van Leer-Hänel severely
distort the profiles of the contact surfaces as shown in
Fig. 8. The velocity profiles are largely oscillatory. The
density jumps are also more smeared.

The table 2 lists the maximum CFL number of each
scheme for the slowing moving contact surface. Again,
the new scheme outperforms the other schemes by hav-
ing the highest CFL number and still maintain the
monotonicity.

Table 2: Maximum CFL numbers of the schemes re-
solving the contact surface

Scheme CFL Number
The new E-CUSP (Zha CUSP) scheme 1.00
Liou AUSM+ 0.48
Roe 0.32
Van Leer fail
Van Leer-Hänel fail

5.2 Entropy condition

This case is to test if a scheme violates the entropy
condition by allowing the expansion shocks. The test
case is a simple quasi-1D converging-diverging tran-
sonic nozzle[15, 16]. The correct solution should be a
smooth flow from subsonic to supersonic with no shock.
However, for an upwind scheme which does not satisfy
the entropy condition, an expansion shock may be pro-
duced.

For the subsonic boundary conditions at the en-
trance, the velocity is extrapolated from the inner do-
main and the other variables are determined by the to-
tal temperature and total pressure. For supersonic exit
boundary conditions, all the variables are extrapolated
from inside of the nozzle. The analytical solution was
used as the initial flow field. Explicit Euler time march-
ing scheme was used to seek the steady state solutions.
All the schemes use first order differencing.

Fig. 9 is the comparison of the analytical and com-
puted Mach number distributions with 201 mesh points
using the new scheme and the scheme of Roe, Van Leer,
Van Leer-Hänel, Liou’s AUSM+. The analytical solu-
tion is smooth throughout the nozzle and reaches the
sonic speed at the throat (the minimum area of the noz-
zle, located at X/h = 4.22). It is seen that both the
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Roe scheme and Van Leer scheme generate a strong ex-
pansion shock at the nozzle throat. Both schemes can
converge to machine zero (12 order of magnitude) with
CFL=0.95 even with the expansion shock waves.

The Van Leer-Hänel scheme can not converge even
with CFL=0.01. The result plotted in Fig. 9 is the
one before it diverges. It shows an expansion shock
with the Mach number jumping from 0.74 to 1.42. The
AUSM+ also has difficulties to converge for this case.
Using CFL=0.05, it managed to reduce the residual
by 4 order of magnitude. The solution of the AUSM+

also shows an expansion shock with the Mach number
jumping from 0.86 to 1.17.

The new E-CUSP scheme does not have an expansion
shock wave at the sonic point, but is not smooth due to
the discontinuity of the first derivative of the pressure
at the sonic point. This is shown as a small glitch at
the sonic point in fig. 9. The glitch does not affect the
scheme to converge the solution to machine zero with
CFL=0.95.

As indicated in [15, 16], the amplitude of the expan-
sion shock decreases when the mesh is refined. When
the 2nd order schemes with the MUSCL differencing
are used, all the expansion shock waves as well as the
glitch of the new scheme at the sonic point disappear.
Since this paper is to compare the original Riemann
solver schemes, no entropy fix[22] that can remove the
expansion shock of Roe schemes was used.

5.3 Wall Boundary Layer

To examine the numerical dissipation of the new
scheme, a laminar supersonic boundary layer on an adi-
abatic flat plate is calculated using first order accuracy.
The incoming Mach number is 2.0. The Reynolds num-
ber based on the length of the flat plate is 40000. The
Prandtl number of 1.0 is used in order to compare the
numerical solutions with the analytical solution. The
baseline mesh size is 81×61 in the direction along the
plate and normal to the plate respectively.

Fig.10 is the comparison between the computed ve-
locity profiles and the Blasius solution. The solutions of
the new scheme (Zha CUSP), Roe scheme, and AUSM+

scheme agree very well with the analytical solution.
The Van Leer scheme significantly thickens the bound-
ary layer. The Van Leer- Hänel scheme does not im-
prove the velocity profile.

Fig.11 is the comparison between the computed tem-
perature profiles and the Blasius solution. Again, the
new scheme (Zha CUSP), Roe scheme, and AUSM+

scheme accurately predict the temperature profiles and
the computed solutions basically go through the analyt-
ical solution. Both the Van Leer scheme and the Van

Leer- Hänel scheme significantly thicken the thermal
boundary layer similarly to the velocity profiles.

Table 3 shows the wall temperature predicted by
all the schemes using the baseline mesh and refined
mesh. The predicted temperature value by the Van
Leer scheme has a large error. The Van Leer- Hänel
scheme does predict the wall temperature accurately
even though the overall profile is nearly as poor as that
predicted by the Van Leer scheme. The new scheme,
Roe scheme and AUSM+ scheme all predict the tem-
perature accurately.

All the results mentioned above are converged based
on mesh size. The wall temperatures using the refined
mesh of 161×121 are also given in table 3. There is little
difference between the results of the baseline mesh and
the refined mesh. The refined mesh does not help to
reduce the large numerical dissipation of the Van Leer
scheme. When the 2nd order schemes are used, both
the velocity and temperature profiles of the Van Leer
scheme and Van Leer- Hänel are improved (not shown).

Scheme Twall, baseline Twall, refined
Blasius 1.8000 1.8000

new scheme 1.8025 1.8018
Roe scheme 1.8002 1.7996

Liou AUSM+ 1.8000 1.8000
Van Leer 1.8328 1.8333

Van Leer-Hänel 1.7970 1.7996

Table 3: Computed non-dimensional wall temperature
using first order schemes with the baseline mesh and
refined mesh

5.4 Transonic Converging-Diverging

Nozzle

To examine the performance of the new scheme in
two-dimensional flow and the capability to capture the
shock waves which do not align with the mesh lines,
a transonic converging-diverging nozzle is calculated as
inviscid flow. The nozzle was designed and tested at
NASA and was named as Nozzle A1[23]. Third order
accuracy of MUSCL type differencing is used to evalu-
ate the inviscid flux with the Minmod limiter. Fig.12
is the computed Mach number contour using the new
E-CUSP scheme with the mesh size of 175× 80. In the
axial direction, there are 140 mesh points distributed
downstream of the nozzle throat, where the oblique
shock waves are located. The grid is clustered near
the wall. For clarity, the coarsened mesh is drawn as
the background with the Mach contours to show the
relative orientation of the shock waves and the mesh
lines. The nozzle is symmetric about the centerline.
Hence only upper half of the nozzle is calculated. The
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upper boundary uses the slip wall boundary conditions
and the lower boundary of the center line uses the sym-
metric boundary conditions.

As indicated by the wall surface isentropic Mach
number distribution shown in fig.13, the flow is sub-
sonic at the inlet with the Mach number about 0.22
and is accelerated to sonic at the throat, and then
reaches supersonic with Mach number about 1.35 at
the exit. Fig.12 shows that right after throat, an ex-
pansion fan emanates from the wall and accelerates the
flow to reach the peak Mach number about 1.5. Due
to the sharp throat turning, an oblique shock appears
immediately downstream of the expansion fan to turn
the flow to axial direction. The two oblique shocks in-
tersect at the centerline, go through each other, hit the
wall on the other side, and then reflect from the wall.
Such shock patten is repeated to the exit and the shock
strength is weakened with the flow going downstream.
Fig. 13 shows that the isentropic Mach number dis-
tributions predicted by the new CUSP scheme and the
Roe scheme agree fairly well with the experiment. The
new E-CUSP scheme and the Roe scheme have virtu-
ally indistinguishable results.

The mesh refinement study indicates that the mesh
resolution in the axial direction does not affect the
shock resolution much. The axial mesh size of 280
downstream of the throat yields only slightly better
shock resolution than the size of 70. However, the mesh
size in the vertical direction dramatically changes the
shock resolution. The mesh size of 80 in the vertical di-
rection yields much better resolution than the mesh size
of 50. This can be seen from the isentropic Mach num-
ber in fig.13, which shows that the mesh size of 175×80
generates much sharper profiles than those of the mesh
175×50 for the first and second shock reflections.

For this transonic nozzle with the mesh size 175 ×
80 on an Intel Xeon 1.7Ghz processor, the CPU time
per time step per node to calculate the inviscid flux is
2.5871×10−6s for the new scheme, which is about 25%
of the CPU time of 1.0284 × 10−5s used for the Roe
scheme. This is a significant CPU time reduction.

5.5 Transonic Inlet-Diffuser

To examine the performance of the new scheme for
shock wave/turbulent boundary layer interaction, a
transonic inlet-diffuser[24] is calculated as shown by
the Mach number contours in fig.14, which has the exit
back pressure equal to 0.83 times of the inlet total pres-
sure. The Reynolds number based on the throat height
is 4.38× 105. The Baldwin-Lomax[25] algebraic turbu-
lence model is used. Third order accuracy of MUSCL-
type differencing with the Minmod limiter is used for
the inviscid fluxes and the second order central differ-

encing is used for the viscous terms.

A normal shock is located downstream of the throat
as shown in fig.14. No flow separation is generated
under this back pressure. The baseline mesh size is
100× 60. When y+

1 is held as constant and the mesh is
refined in both the horizontal and vertical direction, the
results have little variation and are converged based on
mesh size. All the inlet-diffuser results presented in this
paper are from the mesh size of 100×120. The mesh in
the horizontal direction is clustered around the shock
location to better resolve the shock profile.

Fig. 15 is the comparison of the upper wall surface
pressure between the experiment and the computation.
The agreement is very good except that the computa-
tion predicts the shock location a little downstream of
the experimental shock location and the shock strength
a little too strong. It is found that the shock profile is
sensitive to the y+

1 . The y+
1 value of 2, 2×10−4, 7×10−6

are tested. The smaller y+
1 yields a little closer shock

location to the experiment. The results shown in fig.14
and 15 have the y+

1 value of 2 × 10−4. The small y+
1

effect is believed due to the first order extrapolation
of the pressure on wall surface instead of the require-
ment of the turbulence modeling. In the region with
no shock, the first order pressure extrapolation on the
wall is insensitive to the distance of the first cell to the
wall, while in the shock region it is sensitive due to the
large streamwise gradient. As indicated in fig. 15, the
Roe scheme predicts the shock location slightly closer
to the experiment than the new CUSP scheme.

When the back pressure is reduced to 0.72 times of
the inlet total pressure. The normal shock is stronger
and the flow separation is induced. The same mesh
as the previous case is used for this case. Fig.17 is
the predicted pressure distribution compared with the
experiment. Both the new CUSP scheme and the Roe
scheme predict the shock location accurately, but the
shock strength predicted is too strong. However, the
new scheme has the pressure profile in the separation
region downstream of the shock noticeably closer to the
experiment than that predicted by the Roe scheme.

It should be pointed out that the turbulence mod-
eling is a critical factor for the prediction accuracy of
the shock wave/turbulent boundary layer interaction.
Hence the discrepancy between the calculation and ex-
periment shown above is only partially attributed to
the different discretization schemes.

Fig.17 is the pressure contours computed using
pout/pt = 0.72 with the new scheme, Roe Scheme, and
Liou’s AUSM+ scheme. A curved λ shock is formed
due to the shock wave/turbulent boundary layer in-
teraction. The shape of the Mach contours of the new
scheme (Zha CUSP) and the Roe scheme are very much
alike. The contours computed by the AUSM+ scheme
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has significant oscillations near the wall.

6 Conclusions

A new efficient upwind scheme based on the concept of
convective upwind and split pressure (CUSP) is devel-
oped. The upwinding of the convective term and the
pressure splitting are consistent with their characteris-
tics directions. The numerical dissipation of the new
scheme at stagnation is low and is not greater than
that of the Roe scheme. The scheme hence is able to
resolve accurately wall boundary layers, and are able
to capture crisp shock waves and exact contact discon-
tinuities. The performance of the new scheme is com-
pared with the Roe scheme, AUSM+ scheme, Van Leer
scheme, and Van Leer-Hänel scheme.

For the 1D Sod shock tube problem using Euler ex-
plicit scheme, the new scheme has the crispest shock
profile and highest allowable CFL number of 1.0. For
a slowly moving contact surface, the new scheme is
demonstrated to capture the exact contact surface dis-
continuity with the maximum allowable CFL of 1.0,
which is far greater than that of the other schemes.
For a quasi-1D transonic nozzle, all the other schemes
generate expansion shocks at the sonic point. The new
scheme does not have the expansion shock even though
it has a glitch at the sonic point, which is due to the
discontinuity of the first derivative of the pressure split-
ting at sonic point.

For a Mach=2.0 supersonic adiabatic laminar flat
plate boundary layer, the new scheme is able to ac-
curately resolve the boundary layer velocity and tem-
perature profiles using the first order differencing. The
solution is as accurate as that of the Roe scheme and
the AUSM+ scheme and hence demonstrates the low
diffusion of the new scheme.

For a transonic converging-diverging nozzle, oblique
shock waves and reflections are crisply captured even
though the shock waves do not align with the mesh
lines. The predicted wall surface isentropic Mach num-
ber distribution agrees well with the experiment. For a
transonic inlet-diffuser with shock/turbulent boundary
layer interaction, the new scheme and the Roe scheme
predict the surface pressure distributions agreeing well
with the experiment for the case of a weak shock. For
the strong shock case, both the new scheme and the
Roe scheme over predict the strength of the shock wave.
However, the pressure distribution predicted by the new
scheme is closer to the experiment. The AUSM+ solu-
tion has large pressure oscillations.

In conclusion, the new scheme is proved to be accu-
rate, robust and efficient for the flow cases tested in this
paper.
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Figure 1: Temperature distribution of the Sod 1D shock
tube computed by Zha E-CUSP scheme
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Figure 2: Temperature distribution of the Sod 1D shock
tube computed by Roe scheme
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Figure 3: Temperature distribution of the Sod 1D shock
tube computed by Van Leer scheme
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Figure 4: Temperature distribution of the Sod 1D shock
tube computed by Van Leer-Hänel scheme
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Figure 5: Temperature distribution of the Sod 1D shock
tube computed by AUSM+ scheme
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Figure 6: Computed density and velocity profiles of a
slowly moving contact surface
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Figure 7: Computed density profile of a slowly moving
contact surface using the Roe scheme
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Figure 8: Computed density and velocity profiles of a
slowly moving contact surface
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Figure 9: Computed Mach number distributions for the
converging-diverging nozzle
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Figure 10: Computed velocity profiles of the laminar
boundary layer using 1st order schemes
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Figure 11: Computed temperature profiles of the lam-
inar boundary layer using 1st order schemes

Figure 12: Computed Mach number contours using the
Zha CUSP scheme
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Figure 13: Adiabatic Mach number distribution com-
puted on the wall surface of the nozzle

Figure 14: Computed Mach number contours using the
Zha CUSP scheme with pout/pt = .83
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Figure 15: Static pressure distribution computed on the
upper surface of the inlet-diffuser (pout/pt = .83)
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Figure 16: Static pressure distribution computed on the
upper surface of the inlet-diffuser (pout/pt = .72)
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Figure 17: Comparison of computed pressure contours
using the Zha CUSP scheme, Roe Scheme, and Liou’s
AUSM+ scheme (pout/pt = .72)
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