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Abstract

The von Neumann analysis is carried out to study
the dissipation, dispersion and stability limits of
the unsteady linear wave equation solved by the
standard 4-stage Runge-Kutta method with sev-
eral widely used spacial differencing schemes, in-
cluding 2nd order central differencing, 2nd order
upwind, 3rd order and 4th order biased upwind,
and 4th order central differencing. The 2nd or-
der Lax-Wendroff scheme and the 2-stage Runge-
Kutta method are also analyzed as references. For
a central differencing with the 4-stage Runge-Kutta
method, there is a CFL limit, under which the so-
lution is dissipation free. The dissipation free CFL
limit is far below the stability CFL limit. There
is also a CFL limit under which the dispersion er-
ror of a central differencing scheme is independent
of CFL number. The dispersion error exists for
all the schemes studied. The numerical results in-
dicated that the dissipation and dispersion error of
upwind schemes with 4-stage Runge-Kutta method
are independent of the CFL number under the CFL
stability limit. For the wave equation with a low
frequency solution studied in this paper, the 4th
order central differencing and the 4th order biased
upwind differencing have similar level of accuracy.

1 Introduction

Since Runge-Kutta methods were introduced to
solve the steady state solutions governed by the
time dependent Euler equations in early 1980°s[1],
it has been widely applied to time accurate un-
steady flow simulations to achieve high order tem-
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poral accuracy. For example, the 4-stage Runge-
Kutta methods with higher than second order
temporal accuracy are usually chosen for simu-
lation of turbulence (e.g. DNS and LES) and
aeroacoustics[2].

However, there is a lack of systematic study
about the behavior of Runge-Kutta methods for
their dissipation and dispersion errors for time ac-
curate calculation. Our knowledge is still mostly
at the level of 1980’s. For example, we know that
the 4-stage Runge-Kutta method with 2nd order
central differencing has better stability condition
than most of other explicit schemes with CFL sta-
bility limit of 2v/2, [3][4][5][1]. However, there are
two questions that have no clear answers: 1) Is it
dissipation free under this CFL stability limit?; 2)
What is the behavior of the dispersion error?

The stability analysis of the 4-stage Runge-
Kutta method given in [3][4][5] is based on the na-
ture of the ordinary differential equations. It does
not provide the dissipation and dispersion informa-
tion as the von Neumann analysis does, which is
critical to unsteady CFD calculation. In addition,
the stability limit of 21/2 is for the 4-stage Runge-
Kutta method with the 2nd order central differ-
encing. The stability limits of the 4-stage Runge-
Kutta method with the other schemes studied in
this paper were not known. The advantage of the
von Neumann analysis is that it uses the hyper-
bolic linear wave equation that is the CFD model
equation, and it gives the information of stability,
dissipation, and dispersion simultaneously.

For steady state solutions, the stability limit is
the primary interest to achieve fast convergence.
The dissipation during the time marching to the
converged solution is not a concern since the ac-
curacy of the final solutions are controlled by the
spatial accuracy. If a central differencing is used,
the spatial scheme has no dissipation according to
the Taylor series. If an upwind scheme is used,
the spatial scheme will have some inherent dissi-



pation. The artificial or inherent dissipation for
steady state solutions is to increase the stability of
the computation and smoothen the discontinuities
such as shock waves. Hence, as long as a numeri-
cal algorithm can make the steady state solutions
converge, the temporal accuracy of the 1st order
or the 4th order does not matter. The dispersion
error is generally not an issue for steady state so-
lutions since waves are stationary. The place that
the dispersion can affect the steady state solution
is the monotonicity of the discontinuities.

For unsteady calculation, understanding of the
dissipation and dispersion error is crucial. The dis-
sipation will smear the wave amplitude and the dis-
persion will shift the phase of the waves. Both dis-
sipation and dispersion are harmful to an unsteady
solution. A dissipation free scheme in space does
not necessarily lead to a dissipation free solution in
time. For some central differencing schemes, it is
possible to achieve dissipation free solution in time.
However, if the dispersion error is large, the solu-
tion with correct wave amplitude and wrong phase
can be completely meaningless.

Unlike other explicit schemes such as the Euler
explicit method, Lax-Wendroff scheme, Leap Frog
Scheme, etc., the behavior of the 4-stage Runge-
Kutta scheme for its temporal accuracy is not well
understood. Reference [2] indicates that the 4-
stage Runge-Kutta method with a 6th order central
differencing scheme(Padé scheme) have a dissipa-
tive character, even though the spatial discretiza-
tion is not dissipative. However, no systematic re-
sults on the time accuracy of the 4-stage Runge-
Kutta methods have been reported.

The purpose of this paper is to use the von
Neumann analysis to study the dissipation, disper-
sion and stability limits of the 4-stage Runge-Kutta
methods for unsteady linear wave equation with
some popularly used spatial differencing schemes,
including 2nd order central differencing, 2nd order
upwind, 3rd and 4th order biased upwind, and 4th
order central differencing. These results may be
used as the references to develop new discretization
schemes for CFD. It appears that this paper is the
first work to carry out the von Neumann analysis
for the schemes mentioned above.

Runge-Kutta methods can have infinite number
of different formulations. The focus here is on the
standard Runge-Kutta methods, i.e. standard 2-
stage and 4-stage methods.

2 Wave Equation and the
Standard Runge-Kutta
Methods

2.1 'Wave Equation

The wave equation to be studied is the linear wave
equation:

ou ou
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where u can be considered as the convection flow
velocity, ¢ the wave speed, t is the time and z is the
coordinate.

In order to use Runge-Kutta methods, this
equation can be re-written in a pseudo partial dif-
ferential equation form:

du

= R() 2)
where
R(u) = —cg—z (3)

Eq.(2) can then be marched in the temporal di-
rection using Runge-Kutta methods as the integra-
tion for a partial differential equation. The right
hand side R(u) can be discretized using different
spatial discretization schemes. In this paper, the
linear wave equation, eq.(1), is solved with ¢ = 1.

2.2 Runge-Kutta Methods (R-K)

Runge-Kutta methods are to construct a single step
algorithm with multi-stages, which is independent
of the function R(u). The k-stage and k-th order
Runge-Kutta methods should satisfy the following
Taylor-series expansion up to the k-th derivative
term:

At)?
™t = U™ + Atu} + (CUM 2) up
(At)® (At)*
+ Uy + Uy + oo (4)

6 24

For example, the 2-stage 2nd order Runge-
Kutta method should match the Taylor-series ex-

(A;)z ul, and the 4-stage 4th

4
order method should match to the term %u{;tt.

pansion up to the term



The Lax-Wendroff type schemes [6] are also
based on the same Taylor-series expansion, eq.(4).
For the Lax-Wendroff scheme, the time deriva-
tives are replaced by the spatial derivatives through
the governing equation, eq. (1). In other words,
the Runge-Kutta methods are equivalent to Lax-
Wendroff type schemes. The difference is that
the Lax-Wendroff type schemes realize the Taylor-
series in one stage, while Runge-Kutta methods
achieve it through multi-stages. Therefore, the
Lax-Wendroff type schemes can be obtained via
Runge-Kutta methods using certain spatial dis-
cretization. Compared with the Lax-Wendroff type
schemes, the advantage of Runge-Kutta schemes
is that it is easier to be implemented, in particu-
lar for the high order accuracy multi-dimensional
calculations[7]

2.2.1 Standard two stage, 2nd order
Runge-Kutta scheme

Stage 1:
u) = u" + AtR™ (5)
Stage 2:
utt =" 4 %(RW +RW) (6)
where
ou™
(n) — ny = _o2%
R R(u™) “om (7

2.2.2 Standard four stage, 4th order
Runge-Kutta scheme

Stage 1:

ut) =4 + %R(") (8)
Stage 2:

u® = w4 2LRO 9)
Stage 3:

u® = u" + AtR® (10)
Stage 4:

um = g %(RW +2R" +2R® + RY) (11)

where R(™ is evaluated as eq.(7).

2.2.3 The Lax-Wendroff Scheme

The 2nd order Lax-Wendroff scheme[6] may be con-
sidered as a representative of the explicit schemes
for hyperbolic equations. The analysis of Lax-
Wendroff scheme is given here for the purpose of
comparison with Runge-Kutta methods.

Using the wave equation, eq.(1), the time
derivatives in the Taylor-series expansion eq.(4) can
be replaced by the following spatial derivatives:

— 2
Ut = —CUg, Uty = C Ugg,
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Uttt = —C Ugga, Utttt — C Ugzze (12)

Use the same Taylor-series expansion for the
Runge-Kutta method, eq.(4), we have:
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This is the Lax-Wendroff type scheme, which
can achieve any order of accuracy in one step. The
2nd order Lax-Wendroff scheme can be constructed
by using the first three terms of eq.(13) with the
2nd order central differencing;:

2

wpt = a2 (uf —uf )+ o (e — 20l )
(14)
where v is the CFL number expressed as:
cAt
= — 15
v Ax (15)

The second order derivative term adds numer-
ical dissipation to the scheme and creates the up-
wind effect. At v = 1, the Lax-Wendroff scheme
returns to the first order upwind scheme which is
the accurate solution of the wave equation with no
dissipation and dispersion.

The amplification factor of Lax-Wendroff
scheme is:

G = Re(G) + iIm(Q) (16)
G =1-v*(1 — cosp) —ivsinf (17)

The magnitude of the amplification factor is de-
fined as:

|G| = V/(Re(G))? + (Im(G))? (18)



and the relative phase error is defined as[8]:

tan=1[Im(G))
o 1

where —fv is the exact phase angle of the wave
equation, eq.(1). If d)% = 1, the numerical scheme
has no dispersion error and has the same phase
angle as the exact solution of the wave equation.
If % > 1, the numerical scheme is said to have

a leading phase error. If 2 < 1, the numerical
scheme has a lagging phase error. The magnitude
of the amplification factor and the relative phase er-
ror are shown in fig.1 and fig.2, which indicate that
the Lax-Wendroff scheme achieves the accurate so-
lution at CFL=1 (v = 1) with no dissipation and
dispersion errors.

However, both the dissipation and dispersion
of the Lax-Wendroff schemes increase dramatically
when CFL<1. This makes it difficult to control
the accuracy when a stretched mesh is used. For
a stretched non-uniform mesh, the max CFL num-
ber, e.g. CFL=1, is usually set by the smallest
mesh cells. Hence the CFL number everywhere else
will be less than 1. For unsteady simulations, it
then can make the overall solutions very dissipa-
tive and dispersive if the mesh is not sufficiently
fine. In other words, the high accuracy of the Lax-
Wendroff scheme at CFL=1 may be useless if non-
uniform mesh is used due to the large variation of
dissipation and dispersion with CFL number.

3 Analysis
Methods

of Runge-Kutta

3.1 2-Stage R-K with 2nd order
central differencing

Let R™ in eq.(7) be evaluated using 2nd order
central differencing:

n n
et — i
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Substitute it to stage 1 and stage 2 in eq.(5) and
(6), then a one step formulation is obtained as:

R = (20)

v
3 (uihe —2ui +ui5)
(21)

To facilitate the terminology, the term “stencil”
is introduced and defined as:

S ={zi1, Ti2, s Tin} (22)

The width of the stencil is (in — i1)Az.

It is obvious that eq.(21) is different from the
2nd order Lax-Wendroff scheme eq.(14). The dif-
ference is from the representation of the second
order derivative term in the Taylor-series expan-
sion, eq.(13). The 2-stage Runge-Kutta method
uses a five point stencil to evaluate the second or-
der derivative while the Lax-Wendroff scheme uses
a three point stencil. The five points central dif-
ferencing does not create the upwind effect as the
three points one does in Lax-Wendroff scheme.

The amplification factor of the 2-stage Runge-
Kutta scheme with central differencing is:

G =1—-1%sin’B —ivsinf (23)

4
G2=1+ %sin“ﬁ >1 (24)

where 8 = kmAz.

Therefore, the 2-stage Runge-Kutta scheme
with 2nd order differencing is unconditionally un-
stable. This is consistent with the conclusion of
Lambert[3][5][9]. The statement in a CFD text
book[8](p124) that the standard 2-stage Runge-
Kutta method with central differencing is the same
as the 2nd order Lax-Wendroff scheme is incorrect.

3.2 2-Stage R-K with 1st Order Al-
ternating One-side Differencing
(AOSD)

As mentioned before, both the Lax-Wendroff type
schemes and Runge-Kutta schemes are based on
the same Taylor-series expansion , eq.(4). There-
fore the 2nd order Lax-Wendroff scheme should be
able to be obtained by a Runge-Kutta scheme. This
is true when the Runge-Kutta scheme is used as a
predictor-corrector scheme with alternating direc-
tion 1st order one side differencing in each stage,
similar to the McCormack’s scheme[10].

That is, the R and R™) in eq.(5) and (6) are
evaluated as:

Stage 1, Predictor:

K

Az

n n
i Y

Rg") = (downwind) (25)

Stage 2, Corrector:

u® —y®

L _ _ i1 . 9
R; e~ (upwind) (26)



Then the exact formulation of the Lax-Wendroff
scheme, eq.(14), is achieved. That is, the 2nd order
Lax-Wendroff scheme can be obtained by 2-stage
Runge-Kutta method with alternating one-side 1st
order differencing, not by the 2nd order central dif-
ferencing as erroneously stated in [8]. Using the
2-stage R-K, both the 1st order AOSD and 2nd
order central differencing give the 2nd order spa-
tial accuracy. However, the stencil width of the 1st
order AOSD is three points and 2nd order central
differencing is five points. The 1st order AOSD is
stable and the central differencing is unstable.

3.3 4-Stage R-K with 2nd order cen-
tral differencing

Even though the 2-stage Runge-Kutta method with
the 2nd order central differencing is unconditionally
unstable, the 4-stage Runge-Kutta method with
the 2nd order central differencing is stable with the
CFL limit 2v/2, [3][4][5][1]. However, for unsteady
calculations, only knowing the stability limit is not
enough. The unsteady calculations need to be car-
ried out with minimal dissipation and dispersion
errors.

Using the 2nd order central differencing of
eq.(20) and substitute it to the 4-stage Runge-
Kutta formulations stage by stage from eq.(8) to
(11), the following one step formulation is obtained:
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This scheme is 2nd order in space and 4th or-
der in time. Eq.(27) can also be directly obtained
by representing the derivatives in the Lax-Wendroff
type scheme, eq.(13), with the following central dif-
ferencing :

n n
Ujpr — U

up = 2Az (28)

ur, = L2 —42Au§2—|— i (29)

un = ui g — 3“?+é§x3;“?—1 —ui 3 (30)
- Uitpq = AUy, -’;(?Zi: dui p +ui (31)

The first three terms on the right hand side of
eq.(27) are exactly the same as those in eq.(21) for
the 2-stage Runge-Kutta scheme with central dif-
ferencing. The 4-stage Runge-Kutta method with
the 2nd order central differencing becomes stable
due to the added dissipation from the fourth order
derivative. From eq.(28) to(31), it can be seen that
with the derivative order increased by 1, the sten-
cil width to evaluate the derivative increases by two
intervals, one interval on each side.

The amplification factor is:

2 4
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Fig.3 and Fig.4 are the magnitude of the ampli-
fication factor and the relative phase error as de-
fined in eq.(18) and (19). Two conclusions may be
drawn from these results:

1) The 4-stage Runge-Kutta scheme with cen-
tral differencing is essentially dissipation free if
CFL<1. The dissipation free is defined as 0.99 <
|G| < 1.0. The dissipation free solution is true
for both uniform and non-uniform meshes. For
the Lax-Wendroff scheme, it can only achieve dissi-
pation free solutions for uniform mesh at CFL=1.
This advantage of the Runge-Kutta scheme is very
important since a realistic physical problem is usu-
ally solved in a non-uniformed mesh. As long as
the finest mesh cell has the CFL<1, all the rest of
the mesh cells will have CFL<1.0. Hence the whole
flow field will be dissipation free.

The CFL stability limit for this scheme is 2.83.
For the CFL between 1 and 2.83, the solution is
dissipative and the dissipation increases when the
CFL increases.

2) This scheme always has lagging dispersion
error, which is independent of CFL number when
CFL<2.0. For different CFL numbers, the relative
phase error curves coalesce together and reach the
maximum at high frequency(e.g. 8 = 7).

3.4 4-Stage R-K with 1st Order
AOSD

The same strategy of the predictor-corrector
scheme applied to achieve the Lax-Wendroff 2nd
order scheme through the 2-stage Runge-Kutta
method can also be used for the 4-stage Runge-
Kutta scheme. The 1st order one side differencing
scheme is used in alternating direction for stage 1
and 2 as in eq.(25) and eq.(26) and repeated in



stage 3 and 4. The scheme has the 2nd order accu-
racy in space and the 4th order accuracy in time.

The one step formulation can be obtained by
directly representing the derivatives in the Lax-
Wendroff type scheme, eq.(13), with the following
central differencing:

u = ul
n i+1 1—1
=" - 33
Yz 2Az (33)
un = ulyy —2ud +uf (34)
Wt = Wity —2uiy + 2u  —u (35)
un _ u o —Aui | +6u —duP | +ui (36)
rTTTT A.’L‘4

The amplification factor is:

4
G=1+v*(cosp—1) + %(cos2ﬂ + 3 — 4cosp)

—i[%(—shﬁﬂ + 2sinf) — vsinf] (37)

Similar to the 1st and 2nd order derivatives in
the Lax-Wendroff scheme, the width of the sten-
cil to evaluate the 3rd and 4th order derivatives is
the same. The same width of the stencil for the
odd and even derivatives creates the upwind ef-
fects and increases diffusion. This scheme is hence
more dissipative than the one using standard 2nd
order central differencing to construct R at each
stage, eq.(27). The stability limit also drops from
CFL=2.83 to 1.73.

Fig.5 shows the amplification factor of 4-stage
Runge-Kutta method with 1st order alternating di-
rection one-side differencing. It is noted that, even
though the derivatives from eq.(33) to (36) are rep-
resented by central differencing, at no CFL number
the scheme is dissipation free. Of course, for steady
state solution, the scheme is still dissipation free
due to the central differencing. The smaller the
CFL number, the smaller the dissipation.

The dispersion also varies largely with CFL
number as shown in Fig.6. The optimum CFL
number for dispersion is at CFL=1, which does not
largely deviate from value 1. At high frequency,
unlike the 4-stage R-K with the 2nd order central
differencing which has the dispersion curves coa-
lesce together to maximum, the dispersion error of
the 1st order AOSD scatters from low to high. This
may generate less dispersion error at high frequency
than the 2nd order central differencing when a non-
uniformed mesh with non-uniform CFL is used.

3.5 4-Stage R-K with 2nd Order Up-
wind Differencing Scheme

On each stage of the 4-stage R-K method, let R(™
be evaluated by using the 2nd order upwind differ-
encing scheme as:

(ny _ _ Ou"s 3w —duil, +ui,
B ==l )i == Az )

(38)

After substituting eq.(38) to the 4-stage R-K
from eq.(8) to (11) stage by stage, the one step
formulation can be obtained. Due to the lengthy
formulations, the one step formulation and the am-
plification factor are given in Appendix, section
7.1. From the derivative formulations eq.(44) to
(47), it can be seen that, with the derivative order
increased by 1, the stencil width to evaluate the
derivative increases by two intervals, on the upwind
side only.

The stability CFL limit for 4-stage R-K with
2nd order upwind differencing is 0.7, far lower than
that of the 4-stage R-K with 2nd order central dif-
ferencing, 2.83.

Fig.7 and Fig.8 are the amplification factor and
the relative phase error of the 4-stage R-K with 2nd
order upwind differencing. The numerical experi-
ments presented in next section show that all the
upwind schemes using with 4-stage R-K have the
solutions independent of CFL numbers. With this
information in mind, we try to interpret the mean-
ing of fig.7 and fig.8, which is not as obvious as the
2nd order central differencing in fig.3 and 4.

In Fig.7, it is seen that no CFL range can give
dissipation free solution. The smaller CFL num-
ber has the dissipation varying more monotonically
with the frequency. For a large CFL number, the
dissipation error increases at mid-range frequency
and decreases at high frequency. This may make
the dissipation insensitive to CFL number.

In fig.8, the dispersion has mostly leading phase
error and scatters for different CFL numbers at
high frequency. Similar to the 4-stage with 1st or-
der AOSD, at high frequency, unlike the 4-stage R-
K with the 2nd order central differencing with the
dispersion coalescing together, the dispersion error
of the 2nd order upwind differencing also scatters
from low to high. The scattering dispersion error
may make the dispersion error insensitive to dif-
ferent CFL numbers. By comparing fig.4 and 8,
it can be seen that the dispersion error of the 2nd
order upwind differencing is less than the 2nd or-
der central differencing. This is supported by the



numerical results in next section.

3.6 4-Stage R-K with 3rd Or-
der Biased Upwind Differencing
Scheme

For the 4-stage R-K method, let the R("™) be eval-
uated by using the 3rd order biased upwind differ-
encing scheme,

ou™
R = —¢(—);
0 = %)
_2udy +3ui — 6wl +uil,
= =0 ) )

The one step formulation and amplification fac-
tor are given in Appendix, section 7.2. From the
derivative formulations eq.(51) to (54), it can be
seen that, with the derivative order increased by
1, the stencil width to evaluate the derivative in-
creases by three intervals, one on the downwind
side and two on the upwind side.

The CFL stability limit is 1.75, which is twice
higher than the 2nd order upwind scheme. Fig.9
and 10 are the amplification factor and relative
phase error at different CFL numbers. Similar to
the 2nd order upwind scheme, the dissipation ex-
ists for all the CFL number range. At high fre-
quency, both the dissipation and dispersion curves
scatter with different CFL numbers. This makes
the dissipation and dispersion error insensitive to
CFL number. Unlike the 2nd order upwind differ-
encing which mostly has the leading phase error,
the dispersion of the 3rd order upwind scheme is
the lagging phase error.

3.7 4-Stage R-K with 4th Order
Central Differencing Scheme

For the 4-stage R-K method, let the R(™ be eval-
uated by using the 4th order central differencing
scheme,

ou™

r

—uiyo +8uily —8uil +u,
12Az

R = —c(

=—¢( ) (40)

The one step formulation and amplification fac-
tor are given in Appendix, section 7.3. From the
derivative formulations eq.(57) to (60), it can be
seen that, with the derivative order increased by
1, the stencil width to evaluate the derivative in-
creases by four intervals, two on each side.

The CFL stability limit is 2.06, which is lower
than that of the 2nd order central differencing, 2.83.
Fig.11 is the amplification factor at different CFL
numbers. The dissipation pattern is very similar to
the 2nd order central differencing. The scheme is
essentially dissipation free when CFL<0.8.

Fig.12 is the relative phase error at different
CFL numbers. The dispersion error is essentially
independent of CFL number when CFL<1.5. The
overall dispersion error of the 4th order central dif-
ferencing is significantly less than that of the 2nd
order differencing. This is shown as the dispersion
error curve of the 2nd order central differencing
(fig.-4) is steeper than that of the 4th order cen-
tral differencing. Like the 2nd order central dif-
ferencing, the relative phase error curves coalesce
together and reach the maximum at high frequency
for all the CFL numbers.

3.8 4-Stage R-K with 4th Or-
der Biased Upwind Differencing
Scheme

For the 4-stage R-K method, let the R("™) be eval-
uated by using the 4th order biased upwind differ-
encing scheme,

ou™
R™ — _ .2
¢ “or i
_ _c(3ui"+1 + 10u? — 18u} | + 6ul’ 5, — u?73)
12Azx

(41)

The one step formulation and amplification fac-
tor are given in Appendix, section 7.4. From the
derivative formulations eq.(63) to (66), it can be
seen that, with the derivative order increased by
1, the stencil width to evaluate the derivative in-
creases by four intervals, one on the downwind side
and three on upwind side.

The CFL stability limit is 1.05, which is lower
than that of the 4th order central differencing.

Fig.13 and 14 are the amplification factor and
the relative phase error at different CFL numbers.
Similar to all the other upwind schemes, the dissi-
pation exists for all the CFL number range. The
dissipation and dispersion is less than the 2nd or-
der upwind and 3rd order biased upwind scheme,
and also scatter at high frequency.



3.9 Summary of the Analytical Re-
sults

Table 1 (on the last page of this paper) summarizes
the performance of each schemes studied. The ta-
ble lists the CFL stability limit, dissipation free
CFL limit, and the dispersion independent CFL
limit. The stability limit is determined when the
magnitude of the amplification factor is slightly
greater than 1.0 at any frequency point. In gen-
eral, the 4-stage Runge-Kutta method using cen-
tral differencing schemes has higher stability than
using upwind differencing schemes with the same
oder of accuracy. The highest CFL stability limit
is the 4-stage R-K with 2nd order central differ-
encing, CFL=2.83. In addition, the 4-stage R-K
with central differencing has a CFL range within
which the solution is essentially dissipation free,
while the upwind schemes are dissipative for all the
CFL number range.

All the schemes have dispersion error, which
reaches the maximum at high frequency for cen-
tral differencing. However, the central differencing
schemes have a CFL range within which the disper-
sion error is independent of the CFL number. The
dispersion independent CFL limit is higher than
the dissipation free CFL limit. Hence, if the cen-
tral differencing scheme is within the dissipation
free range, it is also in the dispersion independent
CFL range. The dissipation and dispersion of the
upwind schemes are insensitive to the CFL num-
bers. The numerical results presented in the next
section support this conclusion. This is important
to ensure that the whole flow field has about the
same level of dissipation and dispersion when the
non-uniform mesh is used.

4 Numerical Results

4.1 Wave Equation Solution

The wave equation, eq.(1), with ¢ = 1 and wave
number n = 3 is solved. This may represent a low
frequency wave solution. The initial solution is:

u(z,0) = sin2nm(—), 0<az<40. (42)

40

The analytical solution with periodic boundary
conditions is:
r—1t

- < z < 40.
10 ), 0<2<40

(43)

u(z,t) = sin2nn(

4.2 Results for All the Schemes

The number of mesh points used is 81. For all the
schemes studied, the numerical CFL stability lim-
its agree with the analytical ones given in table 1.
That is, when the CFL number is equal or slightly
greater than the analytical CFL stability limits, the
solutions diverge.

Fig.15 shows the results of the Lax-Wendroff
scheme and the 4-Stage Runge-Kutta method with
2nd order upwind differencing at time level t=720.
At CFL=1, the Lax-Wendroff scheme precisely
reproduces the analytical solution because the
scheme is dissipation and dispersion free at CFL=1.
However, once the CFL is slightly away from 1.0,
the solution is seriously diffused. Fig.15 shows that
the result at CFL=0.98 has the peak value only
about 1/3 of the analytical solution, and the result
at CFL=0.9 is completely smeared to zero.

As mentioned before, if the Lax-Wendroff
scheme is used for a non-uniform mesh, only the
smallest grid points can have CFL=1 and all other
grid points will have the CFL less than 1. There-
fore, the unsteady solution could be seriously dif-
fused unless extremely fine mesh is used. However,
the severe temporal dissipation does not prevent
the scheme to be used for steady state calculation
such as the Ni’s scheme[11][12], because the accu-
racy of the steady state solution is controlled by the
spatial differencing scheme. McCormack’s scheme
is also equivalent to the Lax-Wendroff scheme[10].

Fig.15 shows that the results of the 4-Stage
Runge-Kutta method with 2nd order upwind differ-
encing is also seriously diffused as expected, but it
is less diffusive than the Lax-Wendroff scheme even
though both schemes have the 2nd order accuracy
in space. It is observed that the solutions of 4-Stage
Runge-Kutta method with 2nd order upwind differ-
encing is not sensitive to the CFL number. Both
the solutions of the CFL=0.68 and CFL=0.068 col-
lapse together.

Fig.16 is the results of the 4-Stage Runge-Kutta
method with the 1st order AOSD. Similar to the
Lax-Wendroff scheme, the dissipation varies with
the CFL. The smaller CFL, the less the dissipation
as indicated in fig.5. The phase error also varies
with CFL number and is very large. Compared
with the 4-Stage Runge-Kutta method with the
2nd order upwind differencing in fig.15, the AOSD
is less diffusive, but the phase error is larger.

Fig.17 shows the numerical results of the 4-stage
Runge-Kutta method with 2nd and 4th order cen-
tral differencing at time level 720. The results of
the 2nd order central differencing with CFL=1.0



and CFL=0.1 have the same peak value as the
analytical solution because the CFL numbers are
within the dissipation free range, CFL<1.0. The
two solutions also collapse together with the same
phase shift from the analytical solution. This is
because the CFL numbers are in the dispersion in-
dependent range, CFL<2.0. The dispersion error
is so large that the phase of the numerical solu-
tions are shifted by about half a cycle compared
to the analytical solution. Even though the wave
shape and peak value are well preserved, the result
is completely wrong with such a large phase shift.
Comparing fig.17 and 15, it can be seen that the
2nd order upwind scheme has less dispersion error
than the 2nd order central differencing.

Fig.17 also shows the result of the 4-stage
Runge-Kutta method with 2nd order central differ-
encing at CFL=2.5, which is outside of the dissi-
pation free and dispersion independent range. The
solution is smeared and the phase shift is different
from the one with CFL=1.0.

In fig.17, the result of the 4-stage Runge-
Kutta method with 4th order central differencing
at CFL=1 agrees very well with the analytical so-
lution. This is consistent with the analytical result
that the 4-stage R-K with 4th order central differ-
encing has less dispersion error than the 2nd order
central differencing within the dispersion indepen-
dent CFL range.

If the time level is increased by 10 times to
t=7200, the 4th order central differencing result
with CFL=0.8 shows a large phase error as pre-
sented in fig.18. The result preserves the peak value
accurately since it is in the dissipation free range,
CFL<0.8. The solution of the 4th order central
differencing with CFL=2.0 shows large dissipation
and dispersion error, and the result of the 2nd or-
der central differencing with CFL=2.8 is the worst.
This is because both of the CFL numbers are out-
side of their dissipation and dispersion independent
range.

The results on fig.18 indicate that, for the un-
steady calculation of the wave equation using 4-
stage R-K with a central differencing, it could be
very diffusive if only limiting the CFL in the sta-
bility range. The CFL should be limited in the
dissipation free range.

Fig.19 shows the numerical results of the 4-stage
Runge-Kutta method with 3rd and 4th order bi-
ased upwind differencing at time level 720. The
results of the 3rd order biased upwind differenc-
ing with CFL=1.74, 0.87, and 0.087 all collapse to-
gether and the solutions are seriously diffused with
a phase error. This indicates that the dissipation

and dispersion of the 4-stage R-K with 3rd upwind
differencing are independent of the CFL number in
the CFL stability range. Similar results are also
shown for the 4-stage R-K with 2nd upwind differ-
encing in fig.15. At the time level 720, the result
of the 4th order biased upwind differencing agrees
very well with the analytical one, which proves that
the 4th order biased upwind differencing has less
dissipation and dispersion error than the 3rd order
biased upwind differencing.

Again, if the time level is increased by 10 times
higher to t=7200 as shown in fig.20, the accuracy
of the 4th order biased upwind differencing is lost
due to its inherent dissipation and dispersion error.
Fig.20 shows that the results of the 4-stage R-K
with 4th order biased upwind differencing collapse
together for CFL=1.0, 0.2, and 0.02 with a dissipa-
tion and dispersion error. This indicates that the
dissipation and dispersion of the 4-stage R-K with
4th order upwind differencing are independent of
the CFL number in the CFL stability range. Fig.20
also presents the results of the 4-stage R-K with
3rd order biased upwind differencing at CFL=1.0
and 0.2. The results are almost smeared to be-
ing flat. Again, the results collapse together as in
fig.19. Fig.20 means that the dissipation and dis-
persion error of the 4th order biased upwind scheme
is significantly less than those of the 3rd order bi-
ased upwind differencing.

4.3 Compare the 4th Order Schemes

The 4-Stage R-K has the 4th order accuracy in
temporal direction. If a spatial 4th order accuracy
scheme is used, then a complete 4th order accuracy
scheme in space and time is created. It is hence
of interest to compare the two spatial 4th order
schemes: the 4th order central differencing and the
4th order biased upwind scheme.

First of all, if CFL<O0.8, the 4th order central
differencing will only have dispersion error and no
dissipation error. The 4th order biased upwind
scheme will have both dissipation and dispersion
error at all CFL range. By comparing the relative
phase error of these two schemes in fig.12 and 14, it
is seen that the low dispersion error area (around
value 1) of the 4th order biased upwind scheme is
larger than that of the 4th order central differenc-
ing. At the high frequency range, the dispersion
of the biased upwind scheme scatters while that of
the central differencing converges to the maximum
error. Hence, the 4th order biased upwind scheme
has less dispersion error than the 4th order central
differencing.



Fig.17 and 19 show that both the 4th order cen-
tral differencing and 4th order biased upwind differ-
encing (the circle symbols) agree very well with the
analytical solution at time level t=700. When the
time level is increased to t=7000 as shown in fig.18
and 20, both do not agree well with the analyti-
cal solution. The central differencing results has a
lagging phase shift and the upwind differencing has
both a leading phase shift and peak value smeared.
When the mesh size is doubled to 161, both agree
excellently with the analytical solution at t=7200
as shown in fig.21. This is because all these schemes
are consistent and the dissipation and dispersion
error can always be reduced by using finer mesh.

Above results seem indicating that the 4th or-
der central differencing and 4th order biased up-
wind differencing have similar level of accuracy for
the low frequency wave equation solutions studied
in this paper. That is, when one scheme is accu-
rate or inaccurate, so is the other one even though
the nature of the error is different. Of course, the
accuracy is a relative measurement. With the time
level further increased beyond t=7200, the dissi-
pation and dispersion error will also increase even
with the refined mesh. For a particular physical
problem, we may not have to find an absolute dis-
sipation and dispersion free scheme. What we need
to find is the scheme and mesh size that are suffi-
ciently accurate to the required time level, such as
the results in fig.21. It is hoped that the work of
this paper can give some help to serve this purpose.

5 Conclusion

The von Neumann analysis is carried out to study
the dissipation, dispersion and stability limits of
the unsteady linear wave equation solved by the
standard 4-stage Runge-Kutta method with sev-
eral widely used spacial differencing schemes, in-
cluding 2nd order central differencing, 2nd order
upwind, 3rd order and 4th order biased upwind,
and 4th order central differencing. The 2nd order
Lax-Wendroff scheme and the 2-stage Runge-Kutta
method are also analyzed as references.

The 2-stage Runge-Kutta method with the 2nd
order central differencing is unconditionally unsta-
ble. The statement in [8] that the 2-stage Runge-
Kutta method with the 2nd order central differ-
encing is the same as the 2nd order Lax-Wendroff
scheme is incorrect. The 2nd order Lax-Wendroff
scheme can only be achieved by using the 1st order
alternating one-side differencing with the 2-stage
Runge-Kutta method.
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The Lax-Wendroff scheme is accurate for the
linear wave equation at CFL=1.0. However, when
CFL is off 1.0, the scheme is extremely dissipa-
tive. This may make the Lax-Wendroff scheme too
diffusive to be used for unsteady calculation on a
non-uniform mesh, where only the smallest mesh
points can have CFL=1, and everywhere else will
have CFL<1.

The 1st order alternating one-side differencing
can also be used with 4-stage Runge-Kutta method,
which has the 2nd order accuracy of central differ-
encing in space and 4th order accuracy in time,
and the stability limit is CFL<1.73. At no CFL
number, the scheme is dissipation free.

For a central differencing with the 4-stage
Runge-Kutta method, there is a CFL limit, under
which the solution is dissipation free. The dissipa-
tion free CFL limit is far below the stability CFL
limit. There is also a CFL limit under which the
dispersion of the central differencing is independent
of the CFL number. The dispersion independent
CFL limit is higher than the dissipation free CFL
limit.

For the 2nd order central differencing with
the 4-stage Runge-Kutta method, the stability
limit is CFL<2.83, the dissipation free limit is
CFL<1.0, and the dispersion independent CFL
limit is CFL<2.0. For the 4th order central dif-
ferencing with the 4-stage Runge-Kutta method,
the stability limit is CFL<2.06, the dissipation free
limit is CFL<0.8, and the dispersion independent
CFL limit is CFL<1.5.

The numerical results indicated that the dis-
sipation and dispersion error of upwind schemes
with 4-stage Runge-Kutta method are independent
of the CFL number under the CFL stability limit.
The CFL stability limits of the 2nd order upwind
differencing, 3rd order and 4th order biased upwind
differencing are 0.7, 1.75, and 1.05 respectively.

Overall, an upwind scheme with the 4-stage
Runge-Kutta method has lower stability limit and
dispersion error than that of the central differenc-
ing with the same order of accuracy. The disper-
sion error exists for all the schemes with the 4-stage
Runge-Kutta method.

For the wave equation with a low frequency so-
lution studied in this paper, the 4th order central
differencing and the 4th order biased upwind dif-
ferencing have similar level of accuracy.
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7 Appendix

7.1 4-Stage R-K with 2nd Order Up-
wind Differencing Scheme

The one step formulation can be obtained by
directly representing the derivatives in the Lax-
Wendroff type scheme, eq.(13), with the following
upwind differencing :

n n n
C3ui —4Auy +ug,

Uz 2Ax (44)
ul — 24u? | + 22ui 5, — 8ui 5 +ul
Yoo = 4Az?
(45)
no 27wl —108ui’ | + 171ug , — 136u;’ 4
uzzz - 8A.Z'3
STul 4 — 12ul o +ul 4
4
8Az3 (46)
n 8lu] —432u? | +972u? , — 1200u] 4
uziczx = 16A.'L'4
+886u?f 4 — 400u} 5 + 108u? 4
16 Az
—16u , +ul g
_ 4
16 Az (47
The amplification factor is:
G = Re(Q) + iIm(G) (48)

where
Re(G)=1-— g(3 — 4cosf3 + cos23)
2
+§(9 — 24cosf + 22c0s23 — 8cos33 + cos4f)

3
—2—8(27 — 108¢c0sf + 171c0s28 — 136c0s38

+57cos48 — 12c0s583 + cos63)

4

+3V§(81 — 432c0s8 + 972c0s23 — 1200c0s33

+886c0s43 — 400cos55 + 108cos63

—16¢0s73 + cos8p) (49)

Im(G) = —g(4sinﬂ — sin2p)
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2
+%(24sz‘n,@ — 225in28 + 8sin3p — sindp)

3
—2—8(108$inﬂ — 171sin28 + 136sin3p3
—5T7sindf + 12sinb8 — sin6p)

4

+%(432sinﬂ — 9725in28 + 1200sin38

—886sin4 + 400sin53 — 108sin6f

+16sin75 — sin8f) (50)

7.2 4-Stage R-K with 3rd Or-
der Biased Upwind Differencing
Scheme

The one step formulation can be obtained by
directly representing the derivatives in the Lax-
Wendroff type scheme, eq.(13), with the following
biased upwind differencing :

u — 2u g +3ul —6ul | +ui ,
e 6Az
w = duPy o +12u ) — 15u — 32uf
o 36Ax2
42u? 5 — 12u} 5 +uj 4
36Az2
un 8uy 3 + 36uf 5 — 18u — 177ul}
e 216Az3
+90u?_1 +279u} 5, — 318u 5 + 117u ,
216Ax®
—18u3 5 +u} ¢
216Az3
no_ 16u?, 4 + 96u}, 5 + 24ul, , — 6160},
rowr 1296 Azt
+ —207u} 4+ 1872u?_; — 516u] , — 2304u? 4
1296 Az
N 2502u3 4 — 1072u_5 + 228uf’ 4
1296 Azt
—24uil 7 +uil s
1296 Az*

(51)

(52)

(53)

u

(54)
The amplification factor is in the form of
eq.(48):

where
Re(G)=1- %(3 — 4cosf + cos23)

2
+%(—15 — 20co0sf + 46¢0s23 — 12¢083 [ + cosdf)

3

1296

(=177 + 72cosB + 315c0s28 — 310cos3



+117cos48 — 18¢cos58 + cos6/3)
4

v
31104

+2518cos48 — 1072cos58 + 228cos68
—24¢0878 + cos83) (55)

+ (—207 4+ 1256¢0s8 — 492c0s28 — 2208c0s3(3

Im(G) = —%(SSinﬂ — sin2p3)

2
+%(44sinﬂ — 38sin2f + 12sin38 — sindf)

3

—— (-1 inf — 243sin2 2651
1296( 08sinf 3sin283 + 326sin3p
—117sin4f + 18sin58 — sin6f3)

A
31104

—2486sin43 + 1072sin58 — 228sin6f

+24sin78 — sin8f) (56)

+ (—2488sin3 + 540sin2f + 2400sin3

7.3 4-Stage R-K with 4th Order
Central Differencing

The one step formulation can be obtained by
directly representing the derivatives in the Lax-
Wendroff type scheme, eq.(13), with the following
central differencing :

n n n n
—ui o + 8ui+1 —8uf | +ul,

Uz = 12Az (57)
no_ Uiha — 16U + 64uf, + 16u
Yoz = 144A42
—130u? + 16u? | + 64u? , — 16u? 5 +u 4
+ 144 A2 (58)
n_ —Uihe + 24ui s — 1920 4 + 488ul 5
Yooz = 1728 A3
+387ui"+2 — 1584u,  + 1584u? | — 387u} ,
1728 Ax3
—488u™ o + 192u? , — 24u®  + u
+ Ui—3 171;183373 Ui—s5 Ui_g (59)
un uly g — 32ul, ; + 384ul 4 — 2016u7, 4
roTT 20736 Azt
+3324u?+4 + 6240u?, 3 — 16768ul, 5 — 4192u?,
20736 Az
+ 26118u} — 4192u? | — 16768u]" , + 6240u] 4
20736 Az
3324u? , — 20160}
20736 Az

+384u ¢ — 32ul , + ul g

20736Az* (60)

The amplification factor is in the form of
eq.(48):
where

2

Re(G) =1+ 2”@(—130 + 32c0sp + 1280523

1/4

497664
—33536¢0s23 + 12480c0s33 + 6648cos43

—4032c0s583 + 768c0s65 — 64cosTS + 2cos85) (61)

—32¢0830 + 2cos4p) +

(26118 — 8384cosf3

Im(G) = 1”—2(—165m,8 + 25in2p)

v3

10368
+384sindf — 48sind + 2sin63) (62)

3168sinB — 774sin2 — 976sin33

7.4 4-Stage R-K with 4th Or-
der Biased Upwind Differencing
Scheme

The one step formulation can be obtained by
directly representing the derivatives in the Lax-
Wendroff type scheme, eq.(13), with the following
biased upwind differencing :

. 3uy + 10uf — 18u? | +6ul 5 —ul 3

n
T

12Ax 63
9u? ., + 60u? , — 8ul — 324u” , + 438u(7‘ )
n i+2 i+1 i i—1 i—2
Yoo = 144A42
—236u? .+ 72ul , — 12u? - +u?
+ i—3 14@4z$2 i—5 i—6 (64)
un 2Tu} 5 + 270u?, 5 + 4140, | — 2078u}
rre 1728 Ax3
L —1431u? ; +9396u] , — 11964u? , + 7884w ,
1728 Ax3
N —3267u 5 + 894u 4 — 162u} , + 18uj ¢ —ul 4
1728 Ax3 (65)
un _ 81lu, 4 + 1080u3, 3 + 3456u}, , — 6792u},
rrTT 20736 Azt
—30932u] + 53496u] ; + 70944u? ,
+
20736 Azt
—271624u} 5 + 342198u , — 253080u}’ 5
+
20736 Azt

| 126528uf ¢ — 45144uf 5 + 1172407
20736 A"



N —2200u? o + 288u? ;5 — 24u? ;; +ul 4,
20736 Ax*

(66)

The amplification factor is in the form of
eq.(48):

where
Re(G)=1- %(10 — 15¢c0s8 + 6c0s28 — cos33)

2

—|—2V—88(—8 — 264cosf3 + 44T7cos23 — 236c0s33

+72c0s48 — 12¢0850 + cos6)

3

10368
—11937c0s33 + 7884cos43 — 3267cos5f3

+894c0s63 — 162cos7 + 18c0s853 — cos93)
4

+ 197664
2705440534 + 342279c0s4B — 253080c0s50

+126528c0s63 — 45144cos73 + 11724cos8f3

—2200c0898 + 288c0s105 — 24c0s118 + cos123)
(67)

(—2078 — 1017cosp + 9666c0s23

(—30932 + 46704cosf + 74400cos23
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Im(G) = 12

(21sinf — 6sin28 + sin3p)

2
+2"—88(384sm5 — 429sin2p + 236sin35

—T2sin4p + 12sin58 — sin6p)

3
10368
—7884sin4B + 3267sin58 — 894sin6

+162sin783 — 18sin83 + sin93)

(1845sin8 — 9126sin28 + 11991sin33

4

vt
497664
—342117sin48 + 253080sin58 — 126528sin63

+45144sin78 — 11724sin85 + 2200sin95
—288sin108 + 24sinl118 — sinl12p)

(—60288sinB — 67488sin23+272704sin3p

(68)
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Figure 1: Amplification factor of the 2nd order

Lax-Wendroff scheme
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Figure 2: Relative phase error of the 2nd order

Lax-Wendroff scheme
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Figure 3: Amplification factor of 4-Stage Runge-
Kutta method with 2nd order central differencing
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Figure 4: Relative phase error of 4-Stage Runge-
Kutta method with 2nd order central differencing
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Kutta method with 2nd order upwind differencing
scheme
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Figure 9: Amplification factor of 4-Stage Runge-
Kutta method with 3rd order biased upwind differ-
encing scheme
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Figure 10: Relative phase error of 4-Stage Runge-
Kutta method with 3rd order biased upwind differ-
encing Scheme
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Figure 11: Amplification factor of 4-Stage Runge-
Kutta method with 4th order central differencing
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Figure 12: Relative phase error of 4-Stage Runge-
Kutta method with 4th order central differencing
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Figure 13: Amplification factor of 4-Stage Runge-
Kutta method with 4th order biased upwind differ-
encing scheme
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Figure 14: Relative phase error of 4-Stage Runge-
Kutta method with 4th order biased upwind differ-
encing scheme

t=720, number of grid=81

u A CFL=1.0, 2nd Order Law-Wendroff
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15 ————e — CFL=0.98, 2nd Order Law-Wendroff
—_———— CFL=0.9, 2nd Order Law-Wendroff
1.25 — —v— — CFL=0.68, 4S R-K, 2nd Order Upwind
— —0— — CFL=0.068, 4S R-K, 2nd Order Upwind
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Figure 15: Numerical solutions of the wave equa-
tion for Lax-Wendroff scheme and 4-Stage Runge-
Kutta method with 2nd order upwind differencing,
t=720

t=720, number of grid=81
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Figure 16: Numerical solutions of the wave equa-
tion for 4-Stage Runge-Kutta method with 1st or-
der AOSD, t=720



t=720, number of grid=81 t=720, number of grid=81

u — —0O— - CFL=1.0,4S R-K, 2nd Order Central — —O— - CFL=1.74, 4S R-K, 3rd Order Upwind
Analytical 15 Analytical
125 —-—A—-— CFL=0.1,4S R-K, 2nd Order Central —-—A—-— CFL=0.87, 4S R-K, 3rd Order Upwind
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Figure 17: Numerical solutions of the wave equa- Figure 19: Numerical solutions of the wave equa-
tion for 4-Stage Runge-Kutta method with 2nd and tion for 4-Stage Runge-Kutta method with 3rd and
4th order central differencing, t=720 4th order biased Upwind differencing, t="720.
t=7200, number of grid=81 t=7200, number of grid=81
u — —O— - CFL=0.8, 4S R-K, 4th Order Central — —O— - CFL=1.0, 4S R-K, 4th Order Upwind
Analytical 15 Analytical
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—--—O—--— CFL=2.8, 4S R-K, 2nd Order Central 1.25 —-—v—-— CFL=0.02, 4S R-K, 4th Order Upwind

O CFL=1.0, 4S R-K, 3rd Order Upwind
— — — —CFL=0.02, 4S R-K, 3rd Order Upwind
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Figure 18: Numerical solutions of the wave equa- Figure 20: Numerical solutions of the wave equa-
tion for 4-Stage Runge-Kutta method with 2nd and tion for 4-Stage Runge-Kutta method with 3rd and
4th order order central differencing, t="7200. 4th order biased Upwind differencing, t=720.
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Figure 21: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method with 4th order central
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and biased upwind differencing at refined grid, t=7200

40

Scheme Stability | Dissipation Free | Dispersion Independent
2nd order Lax-Wendroff CFL=1.0 CFL=1.0 none
2-stage R-K 2nd order central none none none
2-stage R-K AOSD CFL=1.0 CFL=1.0 none
4-stage R-K 2nd order central | CFL<2.83 CFL<1.0 CFL<2.0
4-stage R-K AOSD CFL<1.73 none none
4-stage R-K 2nd order upwind | CFL<0.7 none all
4-stage R-K 3rd order upwind | CFL<L1.75 none all
4-stage R-K 4th order central | CFL<2.06 CFL<0.8 CFL<1.5
4-stage R-K 4th order upwind | CFL<1.05 none all

Table 1: Summary of different schemes for the CFL limit of stability, dissipation free, and dispersion inde-

pendent range
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