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Abstract

The purpose of this paper is to develop a robust and efficient high order fully conservative finite
difference scheme for compressible Navier-Stokes equations. The 5th order WENO scheme is used for
the inviscid fluxes. A conservative fourth order accuracy finite central differencing scheme is developed for
the viscous terms. An improved ε value of 10−2 is suggested for the WENO smooth factors calculation,
which removes the weight oscillation and significantly improves the convergence rate and level. The
wall surface is taken as half-point mesh so that the no slip wall boundary condition can be accurately
imposed. A 3th order accurate finite difference scheme is given to treat wall boundary condition. The
implicit time marching method with unfactored Gauss-Seidel line relaxation is used with the high order
scheme to achieve steady state solutions with high convergence rate.

1 Introduction

Since the application of computational fluid dynamics becomes more and more popular, the demand on
high accuracy and high efficiency CFD solutions also becomes stronger to satisfy the needs of the broad
engineering problems. So far, most of the engineering applications employ the 2nd order numerical accuracy.
The high order schemes (higher than 3rd order) are mostly limited to the fundamental research such as
high fidelity turbulence simulation (e.g. Large Eddy Simulations and Direct Numerical Simulation) and
aeroacoustic calculation. The reason is that the high order schemes are generally not mature enough for
robust engineering applications.

For aerospace engineering applications with shock waves or contact surfaces, the essentially non-
oscillatory (ENO) or weighted essentially non-oscillatory (WENO) schemes are attractive for their ca-
pability to treat the discontinuities and achieve the consistent high order accuracy in the smooth regions.
By using a convex combination of all candidate stencils to replace the smoothest one in the ENO scheme,
the WENO scheme has more advantages over its ENO counterpart. For example, it approaches certain
optimal accuracy in smooth regions and has better convergence rate due to the smoother numerical flux
used. From its appearance [1, 2] to present, the WENO schemes have been extensively applied to different
flow problems in many areas.

Titarev and Toro [3] firstly carried out an extension of the finite-volume WENO schemes to three
space dimensions with higher orders of accuracy. Although the finite volume WENO schemes can be
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applied on more general unstructured meshes, they need higher computational cost than the WENO
finite difference scheme. As pointed out in references [3, 4], when the piece-wise parabolic reconstruction
is used in two space dimensions, the finite volume WENO schemes require approximately three times
more CPU time than the corresponding finite difference WENO schemes. In three space dimensions, the
difference is about nine times. Hence, for the structured meshes, the finite difference WENO schemes are
preferable. In [5, 6, 7], the formally high-order accurate WENO shock-capturing method using a third-
order total-variation diminishing (TVD) Runge-Kutta time evolution scheme is applied to the reshocked
two-dimensional single-mode Richtmyer-Meshkov instability[5], the shallow water and the open-channel
flow equations[6], and to study adaptive mesh refinement techniques for multi-dimensional hydrodynamic
simulation[7]. Sjogreen and Yee [8] used the low dissipation sixth-order spatial and fifth-order WENO
schemes with the standard fourth-order Runge-Kutta method to study the supersonic reactive flows, even
for 2-D problem.

In the standard WENO scheme, a Riemann solver is needed to capture the discontinuities. There are
two ways to evaluate the Riemann solver fluxes. For the WENO finite difference scheme, Shu suggested
that the WENO reconstruction be directly applied to the split fluxes from left or right[9]. For the WENO
finite volume method, the WENO reconstruction can be applied to the conservative variables, which are
then used to evaluate the Riemann fluxes[9] in the same manner as the MUSCL method of Van Leer for the
TVD schemes[10]. The WENO finite difference methods is more efficient than the finite volume method
in multi-dimensional calculation due to avoiding the Gaussian integrals.

Chen et al [11] presented a class of implicit WENO schemes for the incompressible Navier-Stokes
equations, in which the lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation is used for computing
steady state solutions. Yang et al [12] have extended this method to the resolution of steady compressible
Navier-Stokes equations. Cadiou and Tenaud[13] proposed an implicit WENO shock capturing scheme for
unsteady flows and applied it to one-dimensional Euler equations. The use of WENO spatial operator
not only enhances the accuracy of solutions, but also improves the convergence rate for the steady state
computation as compared with using the ENO counterpart. In references [14, 15], it is found that LU-SGS
is less efficient than Gauss-Seidel line relaxation method for the steady state solution computation.

Even though the finite difference WENO scheme given by Shu et al.[9, 2]is conservative, how to achieve
the high order conservative finite central differencing scheme for the viscous derivatives of compressible
Navier-Stokes equations is not well addressed in the CFD community.

The purpose of this paper is to develop a robust and efficient high order finite difference scheme for
compressible Navier-Stokes equations. The WENO scheme of Jiang and Shu [2] is modified for inviscid
fluxes and a fully conservative fourth-order accurate central finite differencing scheme is proposed for viscous
fluxes. The following numerical techniques are developed in this paper to achieve the aforementioned
purpose: 1) In the cases with the shock waves, the weights of WENO may oscillate and result in low
convergence rate and low convergence level. However, the oscillation can be depressed by reasonably
amplifying the parameter ε introduced in the weights so that the high convergence rate and level are
obtained. 2) A conservative fourth order accuracy finite central differencing scheme is proposed for the
viscous terms of compressible Navier-stokes equations, where 4th order central differencing scheme are
constructed with the stencil width not wider than the WENO stencil width. 3) The wall surface is taken
as half-point mesh so that the no slip wall boundary condition can be accurately imposed in a conservative
manner. A 3th order accuracy finite difference scheme is given to treat the first mesh node on the wall.
4) The implicit time marching method with unfactored Gauss-Seidel line relaxation is used with the high
order WENO scheme to achieve steady state solutions with high convergence rate.
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2 The Numerical Method

2.1 Governing Equations

The normalized Navier-Stokes equations governing compressible viscous flows can be written in the Carte-
sian coordinate as:
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The repeated index k stands for the Einstein summation over x,y and z. The stress τ and heat flux q are,
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The equation of state is
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In the generalized coordinates, Eq.(1) can be written as:
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S′ =
1

J
(ηxR + ηyS + ηzT ),

T ′ =
1

J
(ζxR + ζyS + ζzT ).

For simplicity, the prime ′ in Eq.(2) will be omitted.

In the above equations, ρ is the density, u, v, and w are the Cartesian velocity components in x, y and z
directions, p is the static pressure, and e is the total energy per unit mass, µ is the molecular viscosity, J is
the transformation Jacobian, γ, Re, M∞ and Pr are the ratio of specific heat, Reynolds number, freestream
Mach number and Prandtl number, respectively. Eqs.(2) are discretized into an implicit form as
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where, the inviscid numerical fluxes En+1
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are evaluated by WENO scheme with a Riemann

solver as described in Section 2.2-2.3, and the viscous numerical fluxes R̃n+1
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are evaluated

by high order central differencing as described in Section 2.4.

2.2 Flux Difference Splitting

The Roe’s [16] flux difference scheme is used as the Riemann solver with the WENO scheme in this paper.
For the rest of the paper we will take the flux in ξ direction as the example to explain the numerical
methods. Other directions can be obtained following the symmetric rule. The flux E(Q) is a homogeneous
function of degree one, i.e.,

E = A · Q, (4)

where A is the jacobian
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The high order accuracy of Ei+1/2 is determined by achieving the high order accuracy of the left and

right conservative variables QL and QR in the same way as the MUSCL scheme suggested by van Leer[10].

2.3 WENO Scheme[2]

The the finite difference 5th-order accuracy WENO scheme suggested by Jiang and Shu [2] is used to
evaluate the conservative variables QL and QR. The WENO scheme scheme for a variable uL can be
written as:
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where, ε is introduced to avoid the denominator becoming zero. Jiang ans Shu’s numerical tests indicate
that the results are not sensitive to the choice of ε, as long as it is in the range of 10−5 to 10−7. In their
paper[2], ε is taken as 10−6.

In our numerical experiments, it is observed that when there are shock waves in the flow fields, the
weights of the WENO scheme may oscillate. The convergence of the numerical solutions are affected
seriously. These can be seen from the numerical examples in section 3.5 and 3.6. In this paper, the
parameter ε is taken as ε = 10−2, which significantly improves the convergence rate and convergence level.

The uR is constructed symmetrically as uL about i + 1/2.

2.4 The Discretization of Viscous Terms

A fully conservative fourth-order accurate finite central differencing scheme for the viscous terms is sug-
gested in this paper. These central differencing scheme are constructed to how the stencil width within
the stencil width of the WENO scheme. We take the viscous flux derivative in ξ-direction as the example.
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If R in Eq.(8) can be approximated with the accuracy order not lower than 4th order, the Taylor
expansion analysis of (7) and (8) will give

R̃i+1/2 − R̃i−1/2 = R
′

(ξi) + O(∆ξ4)

Where the 4th order accuracy is achieved. It needs to point out that in Eq.(7), R̃i+1/2 can not be replaced by
Ri+1/2. Otherwise, the 4th order accuracy can not be achieved even though the high order approximation
of Ri+1/2 is used.
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In order to achieve the highest order accuracy of RI (I = i− 3/2, i− 1/2, i + 1/2) in a least stencil not
wider than the total width of the WENO stencils, for example, the stencil S = (xi+r, xi+r+1, · · · , xi+s) for
all ∂u

∂η |I , I = i − 3/2, i − 1/2, i + 1/2, we give the following formulas,
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The other terms are determined similarly.

By choosing different ranges for (m, n), (r, s), (p, q) and different coefficients C I
l , DI

l , C
c
l , one can obtain

the different order accuracy of the viscous terms.

One principle of choosing (m, n), (r, s), (p, q) is to ensure the approximation of ∂R
∂ξ |i (Eq.(7))is a cen-

tral differencing. In this paper, we take (m, n) = (−2, 1), (r, s) = (−3, 2), and (p, q) = (−2, 2), and the
coefficients CI

l , DI
l , C

c
l are given in Tables 1-3.

Taylor expansion analysis of (10)-(13) show that µI ,
∂u
∂η |I ,

∂u
∂η |i,j achieve fourth-order accuracy, and ∂u

∂ξ |I
achieve fifth-order accuracy.

Table 1: The coefficients of CI
l

I CI
−2 CI

−1 CI
0 CI

1

i − 3/2 5/16 15/16 -5/16 1/16
i − 1/2 -1/16 9/16 9/16 -1/16
i + 1/2 1/16 -5/16 15/16 5/16

Table 2: The coefficients of DI
l

I DI
−3 DI

−2 DI
−1 DI

0 DI
1 DI

2

i − 3/2 71/1920 -141/128 69/64 1/192 -3/128 3/640

i − 1/2 -3/640 25/384 -75/64 75/64 -25/384 3/640

i + 1/2 -3/640 3/128 -1/192 -69/64 141/128 -71/1920

Table 3: The coefficients of Cc
l

Cc
−2 Cc

−1 Cc
0 Cc

1 Cc
2

1/12 -8/12 0 8/12 -1/12
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(i,j)

(i,1/2) Wall

(i,3/2)

(i,1)

Figure 1: Sketch of the computational grid

2.5 Wall Boundary Treatment

Since the numerical strategy is to achieve a fully conservative finite differencing scheme, the solution point
near the wall boundary is not located on the wall surface as the conventional finite difference scheme.
Instead, the solution point is located half mesh interval away from the wall as illustrated in Fig.1. For
example, to calculate ∂F

∂η at point (i, 1),

∂F

∂η
=

Fi,3/2 − Fi,1/2

∆η
,

For the flux F1/2 on the wall, we have

F 1

2

=















ρv|w
ρuv|w
ρv2 + p|w
ρvw|w
(ρe + p)v|w















=















0
0
p|w
0
0















In this study, the third-order reconstruction is used for pw,

pw =
1

6
(11p1 − 7p2 + 2p3)

and the third-order reconstruction for QL
i,3/2 and QR

i,3/2 are used for the interface 3/2,
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1

6
(2Q1 + 5Q2 − Q3), QR

i,3/2 =
1

6
(11Q2 − 7Q3 + 2Q4)

2.6 The Time Discretization

For the one-dimensional unsteady problems presented in this paper, the high-order Runge-Kutta methods
are used. The governing equations can be written as an ordinary differential equations form:

du

dt
= L(u),
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where L(u) is the spatial term. The fourth-order Runge-Kutta scheme [17] is expressed as

u(1) = un +
1

2
∆tL(un)

u(2) = un +
1

2
∆tL(u(1))

u(3) = un + ∆tL(u(2))
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3
[−un + u(2) + 2u(2) + u(3)] +

1

6
∆tL(u(3))]

For multi-dimensional problems, the implicit Gauss-Seidel line relaxation with two alternative direction
sweeps in each time step is applied. We expand each term in Eq.(5) in Taylor’s series about interface i+1/2,
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i+1/2 =

Ã(UR − UL)|ni+1/2 + Ãi+1/2|
n(∆UR

i+1/2|
n+1 − ∆UL

i+1/2|
n+1) + O(∆ξ∆t)

And the first-order approximation is used for the implicit terms to enhance the diagonal dominance,

∆UL
i+1/2|

n+1 = ∆Un+1
i , ∆UR

i+1/2|
n+1 = ∆Un+1

i+1 ,

the same methods are applied for fluxes F and G, R,S and T . We then obtain the final implicit form as
following,

B̄∆Un+1
i,j,k + A+∆Un+1

i+1,j,k + A−∆Un+1
i−1,j,k + B+∆Un+1

i,j+1,k + B−∆Un+1
i,j−1,k+

C+∆Un+1
i,j,k+1 + C−∆Un+1

i,j,k−1 = RHSn (14)

The Gauss-Seidel line iteration in a certain sweep direction, for example, in ξ direction assuming the
sweeping from small index value to large value, can be written as

B−∆Un+1
i,j−1,k + B̄∆Un+1

i,j,k + B+∆Un+1
i,j+1,k = RHS′ (15)

where,

RHS′ = RHSn − A+∆Un
i+1,j,k − A−∆Un+1

i−1,j,k − C+∆Un
i,j,k+1 − C−∆Un+1

i,j,k−1 (16)

The accuracy of the converged solution is controlled by RHS, which is calculated by the high order
WENO and central differencing described in section 2.2-2.5.
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3 Results and Discussion

3.1 The Sod Problem

The governing equation is one-dimensional Euler equations,

∂U

∂t
+

∂F

∂x
= 0 (17)

where U = (ρ, ρu, ρe)T , F = (ρu, ρu2 + p, u(ρe + p))T , p = (γ − 1)(ρe − ρu2/2), γ = 1.4.

The initial solution is at rest with a diaphragm located in the the middle of the shock tube. The
pressure on the left side of the diaphragm is 10 times higher than the pressure on the right side. At time
level t=0, the diaphragm breaks. A shock wave propagates to the right side of the tube. A contact surface
follows the shock tube traveling toward the right side at a lower speed. An expansion wave propagates to
the left side of the tube.

Fig.2 is the temperature distribution, which shows that the 5th-order WENO reconstruction achieves
better resolution of expansion wave than the 3rd-order one, but they have little difference for the shock
wave profiles.

3.2 The Shu-Osher Problem

This test case is taken from Ref.[17]. The initial condition is

(ρ, u, p) =

{

(3.857143, 2.629369, 10.3333), x < −4,
(1 + εsin(5x), 0, 1), x ≥ −4.

It represents a Mach 3 shock wave interacting with a sine entropy wave. Fig.3 is the comparison of the
density of the fifth-order WENO and the third-order WENO. It can be seen the high-order reconstruction
obtains much better resolution of the smooth solution with complex structure.

3.3 Wall Boundary Layer

A laminar supersonic boundary layer flow on an adiabatic flat plate is employed to test the convergence
rate. The incoming Mach number is 2.0. The Reynolds number based on the length of the flat plate is
4.0 × 104. The Prandtl number of 1.0 is used in order to compare with the analytical solution. The mesh
size is 180 × 60.

Fig.4 shows that the maximum and L2 residuals can be converged to machine zero. The comparisons
of velocity and temperature profiles of 5th-WENO and 3rd-order MUSCL reconstruction are shown in
Figs.5-6. It shows that both reconstruction methods agree excellently with the Blasius solution.

3.4 Subsonic Flat Plate Turbulent Boundary Layer

The subsonic flat plate turbulent boundary layer is used as the second 2-D test example. In this case, the
Baldwin-Lomax turbulence model is applied. The cell size is 80× 60. The non-dimensional distance y+ of
the first point to the wall is kept under 0.2. The inlet Mach number is 0.5, and the Reynolds number is
4 × 106 based on the plate length. The flow is subsonic at inlet and outlet.

Similar as the laminar supersonic boundary layer flow, the residuals also can be converged to machine
zero of 10−15(See Figs.7). The comparisons from Fig.8 shows that the results of 5th-order WENO re-
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construction is better than those of 3rd-order MUSCL reconstruction in the outer part of the law of the
wall.

3.5 Transonic Converging-Diverging Nozzle

To examine the performance of the methodology in two-dimensional flow and the capability to capture
the shock waves that do not align with the mesh lines, an inviscid transonic converging-diverging nozzle is
calculated. The nozzle was designed and tested at NASA and was named as Nozzle A1[18]. The cell size
is 175 × 80. The grid is clustered near the wall. The inlet Mach number is 0.22.

For this case, we studied the effects of different ε values in the weights of Eq.(6). Fig.9 gives the
variations of weights vs iteration number in ξ-direction (interface i+ 1

2 at the point (8.315, 1.117)) between
two shock waves with ε = 10−6. It can be found that when the shock is formed at iteration number about
750, the weights begin to oscillate. ω0 in the three conservative variables ρL

i+1/2, (ρuL
i+1/2), and (ρv)L

i+1/2

approach to zero. Fig.9a shows that ω1 and ω2 in ρL
i+1/2 oscillate about the value of 0.5. Fig.9b shows ω1

oscillate about the optimal weights 0.6, but ω2 oscillate about 0.4. Fig.9c shows the similar behavior as
Fig.9b, except with the larger amplitude.

Fig.10 gives the variations of weights vs iteration number in ξ-direction (interface i + 1
2 at the point

(8.315, 1.117)) with ε = 10−2. We can see that after the oscillation occurs at iteration number 750 when the
shock is formed, the weights ω0, ω1 and ω2 return back to the optimal weights 0.1, 0.6 and 0.3, respectively.
This behavior is very important to achieve high order accuracy in the smooth region.

Fig.11 shows that the residuals with ε = 10−2 can converge to machine zero, whereas the residuals with
ε = 10−6 fluctuates at about the level of 10−2 and 10−4, respectively.

Figs.13 and 14 give the comparison of pressure contours with ε = 10−2 and ε = 10−6. The converged
solution with ε = 10−2 is smoother than that with ε = 10−6.

The Fig.12 shows the comparison of the pressure coefficients at the upper wall. The solution of ε = 10−6

is more smeared for the shock profiles even though both capture the shock location well.

3.6 Transonic RAE2822 Airfoil

The steady state solution of the transonic RAE2822 airfoil is calculated using the Reynolds averaged
Navier-Stokes equations with the Baldwin-Lomax turbulent model. The mesh size is 128×50, M∞ = 0.729,
Re = 6.5 × 106, the angle of attack is θ = 2.31o.

Similar as in section 3.5, we take a point (x, y) = (0.209, 0.066) under the airfoil and near the leading
to investigate the variations of the weights of WENO-5.

Fig.15 gives the variations of weights vs iteration number in η-direction (interface j + 1
2 at the point

(0.209, 0.066) with ε = 10−6. It can be seen that the weights oscillate dramatically before about 400
iteration step. Then, they become basically stable. However, the weights do not approach their optimal
values (C0 = 0.1, C1 = 0.6 and C2 = 0.3). Instead, they approach the following values: ω0 → 0.05,
ω1 → 0.3, and ω0 → 0.645. Furthermore, from the zoomed plots (Fig.17), it can be seen that the weights
are oscillating with small amplitude when ε = 10−6.

Fig.16 shows the variations of weights vs iteration number in η-direction (interface j + 1
2 at the point

(0.209, 0.066) with ε = 10−2. It can be seen that after an initial oscillation with small amplitude, the
weights approach to their optimal values (C0 = 0.1, C1 = 0.6 and C2 = 0.3).

Figs.17a - 17b are the comparisons of ω1 and ω2, respectively. It can be seen that the weights with
ε = 10−2 are essentially constant, whereas the weights with ε = 10−6 oscillate in the whole iteration
process.
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Again, from Fig. 18, we can see that the maximum residual and the L2 norm residual of ε = 10−6

fluctuate about at the level of 10−2 and 10−5, but the residuals of ε = 10−2 can converge to machine zero.

Fig.19 is the comparison of the pressure coefficients with ε = 10−6 and ε = 10−2 at the airfoil sur-
face. Both results with different ε values are in good agreement with the experiment, even though their
convergence levels are very different as shown in fig.18.

Fig.20 shows the pressure contours of RAE2822 with ε = 10−2. The overall flow field is smooth.

4 Conclusions

A robust and efficient high order fully conservative finite difference scheme is developed for Navier-Stokes
equations. The study shows that the oscillation of the weights in high order WENO scheme can induce the
low convergence rate and level. By using a reasonable amplified ε value in WENO scheme can overcome
this drawback. A conservative fourth order accuracy finite central differencing scheme is developed for the
viscous terms, which has the stencil width within the stencil of the WENO scheme. The implicit time
marching method with unfactored Gauss-Seidel line relaxation is used with the 4th order accuracy viscous
scheme and the 5th WENO scheme with an improved ε value of 10−2 to achieve steady state solutions
with high convergence rate and level.

The following cases are calculated to demonstrate the high order methodology developed: 1) 1D un-
steady Sod shock tube; 2) The 1D unsteady Shu-Osher Problem with a Mach 3 shock wave interacting with
a sine entropy wave. 3) a flat plate supersonic laminar boundary layer; 4) a subsonic flat plate turbulent
flow solution with Baldwin-Lomax turbulent model; 5) an inviscid 2D converging-diverging nozzle with
oblique shock waves and reflections; 6) the transonic flow over RAE2822 airfoil.

Numerical results show that the methodology is efficient and robust.
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Figure 9: The variations of weights vs iteration number in ξ-direction at the point
(8.315, 1.117), the transonic converging-diverging nozzle flow, ε = 10−6. (a): ρL
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Figure 15: The variations of weights vs iteration number in η-direction at the point
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Figure 16: The variations of weights vs iteration number in η-direction at the point
(0.209, 0.066), the transonic flow over RAE2822 airfoil, ε = 10−2. (a): ρL
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