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Abstract

This paper studies the sweep direction effect on the convergence rate and CPU time of the implicit
unfactored Gauss-Seidel line relaxation (GSLR) method for compressible flows. The line Gauss-Seidel
iteration is also compared with the LU-SGS (lower-upper symmetric Gauss-Seidel) method. A modified
LU-SGS method, namely LU-GSLR, is studied. The LU-GSLR use the unfactored GSLR method with
the simple matrix of the LU-SGS. The numerical experiments indicate that for the external flows, the
line Gauss-Seidel relaxation methods with sweeping in all directions achieves the optimum convergence
rate and CPU efficiency. For an inviscid transonic internal flow, the best convergence rate is obtained
with sweeping in streamwise direction only. Within each time step, one sweep (a forward sweep plus
a backward sweep) per time step is sufficient. For the three implicit methods, GSLR, LU-SGS, and
LU-GSLR, the GSLR is the most efficient method when the Roe scheme is used. The LU-GSLR method
is a feasible method and can achieve better efficiency than the LU-SGS for some cases.

1 Introduction

The implicit methods for compressible flow calculation have been widely employed due to their less stiffness
and faster convergence rate than the explicit schemes. In general, implicit methods require the inversion
of a linearized system of equations. The direct inversion of the linear equations is usually preventively
expensive. The implicit linear equations are therefore commonly inverted by iterative methods.

It is known that the approximately factored (AF) implicit schemes such as the Beam-Warming scheme
[1] will introduce the factorization errors, which limits the size of the time steps. For 3D linear wave
equation, the AF scheme is even not unconditionally stable. The unfactored schemes with no factorization
errors such as the line Gauss-Seidel iterations can have larger time steps with faster convergence rate than
the AF methods[2, 3, 4, 5, 6, 7]. However, the unfactored schemes typically require more CPU time per
iteration since the matrices are usually the full Jacobian matrices and can not be diagonalized.

The lower-upper symmetric Gauss-Seidel (LU-SGS) method suggested by Jameson and Yoon [8, 9] has
been widely used due to their relatively easier implicit implementation[10, 11, 12]. The attractive feature
of the LU-SGS is that the evaluation and storage of the Jacobian matrices can be eliminated by making
some approximations to the implicit operator. Although the LU-SGS method could be more efficient
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than its explicit counterpart and is unconditionally stable for linear wave equation, the factorization is
approximated and will necessarily introduce the factorization errors.

For the unfactored implicit Gauss-Seidel relaxation scheme used to solve the 2D incompressible Navier-
Stokes equations, Rogers[13] compared the efficiency of point-Jacobi relaxation (PR), Gauss-Seidel line
relaxation (GSLR), incomplete lower-upper decomposition, and the generalized minimum residual method
preconditioned with each of the three other schemes. If a forward sweep plus a backward sweep counts as
one sweep, Rogers found that these methods can obtain different efficiency when the different number of
the sweeps are used. For three-dimensional incompressible flows, Yuan[14] compared the efficiency of the
point-Jacobi relaxation, line Gauss-Seidel relaxation, and diagonalized ADI schemes. Yuan[14] observed
that the PR(2) (PR with two sweeps) is optimum in all PR(n), and GSLR(1) is optimum in all GSLR(n).
For the line Gauss-Seidel relaxation methods, one can choose one or more of the coordinate directions as
the sweep direction[3, 15]. For compressible flows, there is few study on how the sweep directions will
affect the convergence rate and CPU time.

This paper is to study the implicit methods for compressible flows with following objectives: 1) in-
vestigate the sweep direction effect on the convergence rate and CPU time of the implicit unfactored line
Gauss-Seidel iteration method; 2) compare the convergence rate and CPU efficiency of the popularly used
LU-SGS method and the unfactored line Gauss-Seidel iteration method. 3) study the convergence rate
of a new implicit method that combines the matrix of the LU-SGS with the unfactored Gauss-Seidel line
relaxation method.

The study concludes that the unfactored Gauss-Seidel line relaxation has the fastest convergence rate
and the most efficient CPU time. The computational cases studied in this paper include: 1) a supersonic
laminar flow on a flat plate; 2) a subsonic turbulent flow on a flat plate; 3) an inviscid transonic flow in a
converging-diverging nozzle. 4) the transonic flow over RAE2822 airfoil.

2 The Implicit Discretization

The normalized Navier-Stokes equations governing compressible viscous flows can be written in the Carte-
sian coordinate as:
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The repeated index k stands for the Einstein summation over x,y and z. The stress τ and heat flux q are,
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The equation of state is
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In the generalized coordinates, Eq.(1) can be written as:
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where,
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For simplicity, the prime ′ in Eq.(2) will be omitted.

In the above equations, ρ is the density, u, v, and w are the Cartesian velocity components in x, y and z

directions, p is the static pressure, and e is the total energy per unit mass, µ is the molecular viscosity, J is
the transformation Jacobian, γ, Re, M∞ and Pr are the ratio of specific heat, Reynolds number, freestream
Mach number and Prandtl number, respectively. Eqs.(2) are discretized into an implicit form as
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where ∆t is the time interval, ∆V is the volume of control cell.

2.1 Gauss-Seidel Line Relaxation(GSLR)

For different solver, the linearized matrices are different, for example, when the Roe scheme,
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is used, and the surface fluxes EL (the others are similar as EL ) on time n and n + 1 can be expressed as,
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and,
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Therefore, the final implicit form can be written as,
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where, as the definition of Ai±1/2, Bj±1/2 and Ck±1/2, Li±1/2, Mj±1/2 and Nk±1/2 are the Jacobian matrices
on cell interface for fluxes F, G, R, S and T , respectively. Superscript R and L denote the right and left
of the interface.
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The Gauss-Seidel line iteration with a certain sweep direction (in this paper, one sweep is defined as
a forward sweep plus a backward sweep), for example, ξ direction with the index from small to large, can
be written as
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2.2 LU-SGS method [8, 9]

When the LU-SGS method is used, the discretization of eq.(1) is divided into implicit and explicit parts,
and can be written as
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where ρ̃(A) = max[|λ(A)|] and represent a spectral radius of the Jacobian Matrix A with the eigenvalues
λ(A). If first-order one side differences are used, Eq.(24) can be factored into
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In the present study, for the computation of RHSn, the Roe scheme with the MUSCL(monotone
upstream-centered schemes for conservation laws) differencing approach [16] is used for computing inviscid
terms, and the second-order central difference scheme is used for viscous terms.
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2.3 Modified LU-SGS Method with GSLR

A modified LU-SGS method, namely LU-GSLR, is proposed to replace the matrices of the unfactored line
Gauss-Seidel iteration by the LU-SGS matrices. The purpose is to make use of the advantages of the high
convergence rate of the unfactored line Gauss-Seidel iteration and the simplicity of the LU-SGS matrices
and hopes it may achieve high CPU efficiency.

For Eqs.(21)-(23), the matrices A+, · · · , C− and B̄ are replaced by the following matrices based on
the LU-SGS[8],
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then, the LU-GSLR method is obtained by using the process of the Gauss-Seidel line iteration Eqs.(21)-(23).

3 Results and Discussion

3.1 Supersonic Laminar Boundary Layer

The first case is a laminar supersonic boundary layer flow on an adiabatic flat plate. The incoming Mach
number is 2.0. The Reynolds number based on the length of the flat plate is 4.0×104. The Prandtl number
of 1.0 is used in order to compare the numerical solution with the analytical solution. The mesh size is
180 × 60.

The convergence histories for the supersonic flat plate boundary layer are shown in Fig.1. It can be seen
that the fastest convergence was obtained by sweeping in both coordinate directions within each time step.
The convergence rate of sweeping only in the streamwise direction alternatively (ξ) is slightly less than
that of sweeping in both coordinate directions, but is much faster than that of sweeping in the spanwise
(η) direction only. This means that even though the sweeping in spanwise (η) direction only is the least
efficient, but sweeping in the streamwise and the spanwise direction within each times step is the most
efficient, better than sweeping in either direction only.

Figs.2 and 3 show the comparisons of the computed velocity and temperature profiles with the Blasius
solutions. They agree excellently.
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3.2 Subsonic Flat Plate Turbulent Boundary Layer

The subsonic flat plate turbulent boundary layer is used as the second test example. In this case, the
Baldwin-Lomax turbulence model is used. The mesh size is 80 × 60. The non-dimensional distance y+ of
the first cell center to the wall is kept under 0.2. The inlet Mach number is 0.5, and the Reynolds number
is 4 × 106 based on the plate length. The flow is subsonic at inlet and outlet.

For this subsonic turbulent boundary layer flow, the same conclusion as the supersonic flat plate
boundary layer is obtained for the convergence histories, which is shown in Fig.4. That is, the Gauss-
Seidel line relaxation sweeping in both coordinate directions within each time step is the most efficient,
faster than sweeping in either direction only within each time step. Fig.5 shows that the computed velocity
profile agrees well with the law of the wall.

3.3 Transonic Converging-Diverging Nozzle

The transonic converging-diverging nozzle is calculated to study the behavior of the Gauss-Seidel iteration
for internal flows. The nozzle was designed and tested at NASA and was named as Nozzle A1[17] and
is symmetric about the centerline. Hence only the upper half of nozzle is computed. The mesh size is
175 × 80. The grid is clustered near the wall. The inlet Mach number is 0.22.

Fig.6 compares the convergence histories for the nozzle flow with different sweeping directions. Different
from the two flat plate boundary layer flow aforementioned which are external flows, the Gauss-Seidel
iteration with two sweeps in both the coordinates direction within each time step is the least efficient one,
slower than alternative sweeping two times in either of the coordinate direction, that is the streamwise or
spanwise direction.

Fig.7 is the computed pressure contour of this flow.

3.4 Transonic RAE2822 Airfoil

The steady state solution of the transonic RAE2822 airfoil is calculated using the Reynolds averaged NS
equation with the Baldwin-Lomax turbulent model. The mesh size is 128×50, M∞ = 0.729, Re = 6.5×106,
the angle of attack is θ = 2.31o.

For this case, the computational zone is divided into two blocks, and in each block, the mesh in i-
direction is defined along the airfoil surface. So the streamwise and the spanwise can not be distinguished
by using i or j-direction.

From the convergence histories shown in Fig.8, it can be seen that the fastest convergence rate is
obtained by alternative sweeping in j-direction two times within each time step. The sweeping in i-direction
has about the same convergence rate as that sweeping in both direction. Fig.9 shows the computed pressure
coefficient agree well with the experiment. Fig.10 is the pressure contours, which shows the shock wave
captured.

3.5 Comparisons of GSLR, LU-SGS and LU-GSLR

Fig.11 gives the comparison of the convergence histories for the supersonic boundary layer flow using the
GSLR, LU-SGS and LU-GSLR methods. It shows that the GSLR is far more efficient than the LU-SGS
and LU-GSLR method. The CPU time used by the GSLR is less than one-eighth of LU-SGS. For this
case, the LU-GSLR is more efficient than the LU-SGS and its CPU time is about two-third of LU-SGS.

Fig.12 shows the comparison of convergence histories for the subsonic flat plate turbulent boundary
layer. In this case, the CPU advantage of the GSLR over the LU-SGS and LU-GSLR is even more greater
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than the supersonic flat plate boundary layer flow. GSLR can obtain the converged solution at about 1/16
of the CPU time required by LU-GSLR, and 1/26 of the CPU time required by the standard LU-SGS
method.

Fig.13 is the comparison of convergence histories of the transonic converging-diverging nozzle. GSLR
behaves the same as for the previous two cases with the highest CPU efficiency and convergence rate.
However, for this case, the LU-SGS outperforms the LU-GSLR with less CPU time to converge to machine
zero.

Fig.14 shows the comparison of convergence histories for the transonic RAE2822 airfoil. Again, GSLR
is the most efficient method. Before the residual reaches the level of 10−10, LU-GSLR is faster than LU-
SGS. For the last 3 order of magnitude to machine zero, the convergence rate of the LU-GSLR is decreased
and the LU-SGS maintain a linear convergence rate.

It needs to point out that the comparison of the convergence behavior of the GSLR, LU-SGS and
LU-GSLR in this paper is for the Roe scheme only. The conclusion that the GSLR is the most efficient
method may not be general. For the GSLR, the Jacobian matrix based on Roe scheme is used. For the
LU-SGS or LU-GSLR, the general Jacobian matrix suggested by Jameson [8] is used. It is almost certain
that there is a matching or compatibility issue. That is when the implicit matrix based on the Roe scheme
on the LHS matches the Roe scheme on the RHS such as the GSLR method, high convergence rate can
be obtained. When the implicit matrix on the LHS does not match the Roe scheme on the RHS such as
the LU-SGS or LU-GSLR method, the convergence rate will be significantly slowed down. However, this
does not rule out that a high CPU efficiency may be obtained when the LU-SGS or LU-GSLR is used with
other schemes on the RHS such as the scheme used by Jameson[8].

4 Conclusion

Gauss-Seidel line relaxation methods with different sweeping directions have been studied for computing
external and internal flows. The numerical experiments indicate that the different sweeping direction has
influence on the convergence rate and CPU efficiency. For the computation of external flow, it is best
to use Gauss-Seidel line relaxation methods with sweeping in all coordinate directions. However, for the
inviscid internal transonic nozzle flow, the better convergence rate is obtained with the sweep in a single
direction, not in both the coordinate direction. We also studied the effect of the sweep number on the
convergence rate, and found one sweep is optimum as the conclusion in Ref.[14].

In this study, we suggest a modified LU-SGS method, namely LU-GSLR, which uses the unfactored
Gauss-Seidel line relaxation with the simple matrix of the standard LU-SGS matrix instead of the full
Jacobian matrix of the standard GSLR. Numerical results show that the new method is feasible and can
get better convergence rate than LU-SGS in some cases. Among the three implicit methods, GSLR, LU-
SGS, and LU-GSLR based on Roe scheme, the GSLR has the fastest convergence rate. It is not certain
if the GSLR is still the most efficient method if other scheme instead of the Roe scheme is used for the
inviscid fluxes.
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Figure 1: L2-norm residual vs CPU time, the
supersonic boundary layer flow
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Figure 2: Velocity profile of the supersonic
boundary layer flow
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Figure 3: Temperature profile of the supersonic
boundary layer flow
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Figure 4: L2-norm residual vs CPU time, the
turbulent boundary layer
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Figure 5: Computed velocity profile compared
with the law of the wall
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Figure 6: L2-norm residual vs CPU time, the
transonic converging-diverging nozzle flow

Figure 7: Pressure contours of the transonic
converging-diverging nozzle flow
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Figure 8: L2-norm residual vs CPU time, the
transonic flow over RAE2822 airfoil
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Figure 9: Pressure coefficients at the airfoil sur-
face of the transonic flow over RAE2822 airfoil
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Figure 10: Pressure contours of of the transonic
flow over RAE2822 airfoil
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Figure 11: Comparison of L2-norm residual vs
CPU time, the supersonic boundary layer flow
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Figure 12: Comparison of L2-norm residual vs
CPU time, the turbulent boundary layer
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Figure 13: Comparison of L2-norm residual vs
CPU time, the transonic converging-diverging
nozzle flow
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Figure 14: Comparison of L2-norm residual vs
CPU time, the transonic flow over RAE2822 air-
foil
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