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Abstract

The flutter boundary of the 3D AGARD 445.6 Wing is calculated by using an efficient upwind
scheme, Zha CUSP2, in moving grid system. The 3D Reynolds average Navier-Stokes equations
are solved. Closure of the Reynolds stresses is provided by the Baldwin-Lomax turbulence model.
The modal approach solver is used to calculate the structural response under aerodynamic
forces with second-order accuracy. The CFD and structural solvers are fully coupled implicitly
via successive iterations within each physical time step. The numerical results show that this
method is capable of capturing the aeroelastic properties of the flexible wing efficiently. The
computed flutter boundary of AGARD Wing 445.6 for free stream Mach numbers ranging from
0.499 to 1.141 agrees well with the experiment.

1 Introduction

Particular attention needs to be paid for simulation of 3-D flow-induced structural vibration in a
transonic flow since it is a very CPU time consuming task and the dynamic response of the system
is sensitive to the numerical dissipation introduced by the numerical scheme. Consequently, it’s
required that the numerical scheme is able to model the flow field with high efficiency and low
numerical diffusion.

Among many researchers in the field of aeroelastic analysis of 3-D flexible structures, Lee-Rausch
and Batina[1] used a three-factor, implicit, upwind-biased Euler/Navier-Stokes code coupled with
a modal structure solver. Morton, Melville and Gordnier et al. developed an implicit fully cou-
pled fluid-structure interaction model, which used a Beam-Warming implicit, approximate factored
scheme for the flow solver coupled with modal structural solver [2][3][4][5]. Liu et al. developed a
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fully coupled method using Jameson’s explicit scheme with multigrid method and a modal struc-
tural model[6]. Doi and Alonso[7] coupled a explicit Runge-Kutta multigrid flow solver with a FEM
structure solver to predict the aeroelastic responses of NASA Rotor 67 blade.

Recently Chen et al.[8] have developed a fully coupled methodology for calculating the flow-
induced flexible body vibrations. In their method, the Roe scheme is extended to the moving grid
system. The unsteady solutions march in time by using a dual-time stepping implicit unfactored
Gauss-Seidel iteration. The unsteady Navier-Stokes equations and the modal structural equations
are fully coupled implicitly via successive iteration within each physical time step. Comparing the
methods mentioned previously, the work done by Chen et al. [8] has several following advantages
given below:

(1) The unfactored Gauss-Seidel iteration is unconditionally stable and can avoid factorization
error introduced by those factorized methods, such as the methods used in [1][2][3][4][5]. This
feature allows very large time step to achieve fast convergence rate.

(2) Unlike the central differencing schemes used in [2] [2][3][4][5][6], the Roe scheme has inherent
dissipation, and does not need additional artificial dissipation terms which need to be calibrated
case by case.

(3) Modal approach structure model offers a significant CPU time savings over the FEM full
structure model used in [7]. Compared with the full model results using FEM solver ANSYS, it is
shown that the modal approach is very accurate for moderate deflection and torsion such as those
encountered in AGARD Wing 445.6 flutter[8].

The drawback in [8] is that the Roe scheme Riemann solver consumes a lot of CPU time due to its
matrix operation. To remedy this problem, a newly developed E-CUSP upwind scheme suggested
by Zha [9] is employed in this paper to make the aeroelastic calculation more efficient. Same as
the Roe scheme, the Zha E-CUSP2 scheme has very low diffusion and is able to capture crisp
shock profiles and accurate boundary layer profiles[9]. Furthermore, this scheme is more CPU time
efficient than Roe scheme since it does not require any matrix operation. The flux computational
work amount of Zha E-CUSP2 scheme is only 1/4 of that of the Roe scheme [10].

In this paper, the complete flutter boundary (free stream Mach number ranging from 0.499 to
1.141) for AGARD Wing 445.6 is calculated. The computed results are presented and compared
with the corresponding experimental data given in ref.[11].

2 CFD Model

2.1 Flow Governing Equations

The governing equations for the flow field computation are the Reynolds-Averaged Navier-Stokes
equations (RANS) with Favre mass average which can be transformed to the generalized coordinates
and expressed as:

∂Q′

∂t
+
∂E′

∂ξ
+
∂F′

∂η
+
∂G′

∂ζ
=

1

Re

(

∂E′v
∂ξ

+
∂F′v
∂η

+
∂G′v
∂ζ

)

(1)

where Re is the Reynolds number and
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Q′ =
Q

J
(2)

E′ =
1

J
(ξtQ+ ξxE+ ξyF+ ξzG) =

1

J
(ξtQ+E′′) (3)

F′ =
1

J
(ηtQ+ ηxE+ ηyF+ ηzG) =

1

J
(ηtQ+ F′′) (4)

G′ =
1

J
(ζtQ+ ζxE+ ζyF+ ζzG) =

1

J
(ζtQ+G′′) (5)

E′v =
1

J
(ξxEv + ξyFv + ξzGv) (6)

F′v =
1

J
(ηxEv + ηyFv + ηzGv) (7)

G′v =
1

J
(ζxEv + ζyFv + ζzGv) (8)

where the variable vector Q, and inviscid flux vectors E, F, and G are

Q =















ρ̄
ρ̄ũ
ρ̄ṽ
ρ̄w̃
ρ̄ẽ















, E =















ρ̄ũ
ρ̄ũũ+ p̃
ρ̄ũṽ
ρ̄ũw̃

(ρ̄ẽ+ p̃)ũ















, F =















ρ̄ṽ
ρ̄ũṽ

ρ̄ṽṽ + p̃
ρ̄w̃ṽ

(ρ̄ẽ+ p̃)ṽ















, G =















ρ̄w
ρ̄ũw̃
ρ̄ṽw̃

ρ̄w̃w̃ + p̃
(ρ̄ẽ+ p̃)w̃















,

The E′′, F′′, and G′′ are the inviscid fluxes at the stationary grid system and are:

E′′ = ξxE+ ξyF+ ξzG,

F′′ = ηxE+ ηyF+ ηzG,

G′′ = ζxE+ ζyF+ ζzG,

and the viscous flux vectors are given by

Ev =















0
τ̄xx − ρu′′u′′

τ̄xy − ρu′′v′′

τ̄xz − ρu′′w′′

Qx















, Fv =















0
τ̄yx − ρv′′u′′

τ̄yy − ρv′′v′′

τ̄yz − ρv′′w′′

Qy















, Gv =















0
τ̄zx − ρw′′u′′

τ̄zy − ρw′′v′′

τ̄zz − ρw′′w′′

Qz
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In above equations, ρ is the density, u, v, and w are the Cartesian velocity components in x, y
and z directions, p is the static pressure, and e is the total energy per unit mass. The overbar
denotes the Reynolds-averaged quantity, tilde and double-prime denote the Favre mean and Favre
fluctuating part of the turbulent motion respectively. All the flow variable in above equations are
non-dimensionlized by using the freestream quantities and a reference length L.

Let subscript 1, 2 and 3 represent the coordinates, x, y, and z, and use Einstein summation
convention, the shear-stress and Qx, Qy, Qz terms in non-dimensional forms can be expressed in
tensor form as

τ̄ij = −
2

3
µ̃
∂ũk
∂xk

δij + µ̃(
∂ũi
∂xj

+
∂ũj
∂xi

) (9)

Qi = ũj(τ̄ij − ρu′′u′′)− (q̄i + CpρT ′′u′′i ) (10)

where the mean molecular heat flux is

q̄i = −
µ̃

(γ − 1)Pr

∂a2

∂xi
(11)

The molecular viscosity µ̃ = µ̃(T̃ ) is determined by Sutherland law, and a =
√
γRT∞ is the

speed of sound. The equation of state closes the system,

ρ̄ẽ =
p̃

(γ − 1)
+

1

2
ρ̄(ũ2 + ṽ2 + w̃2) + k (12)

where γ is the ratio of specific heats, k is the Favre mass-averaged turbulence kinetic energy. The
turbulent shear stresses and heat flux appeared in above equations are calculated by Baldwin-
Lomax model[12]. The viscosity is composed of µ + µt, where µ is the molecular viscosity and µt

is the turbulent viscosity determined by Baldwin Lomax model. For a laminar flow, the µt is set
to be zero.

2.2 Time Marching Scheme

The time dependent governing equation (1) is solved using the control volume method with the
concept of dual time stepping suggested by Jameson [13]. A pseudo temporal term ∂Q

∂τ
is added to

the governing equation (1). This term vanishes at the end of each physical time step, and has no
influence on the accuracy of the solution. However, instead of using the explicit scheme as in [13],
an implicit pseudo time marching scheme using line Gauss-Seidel iteration is employed to achieve
high CPU efficiency. For unsteady time accurate computations, the temporal term is discretized
implicitly using a three point, backward differencing as the following

∂Q

∂t
=

3Qn+1 − 4Qn +Qn−1

2∆t
(13)

Where n is the time level index. The pseudo temporal term is discretized with first order Euler
scheme. Let m stand for the iteration index within a physical time step, the semi-discretized
governing equation (1) can be expressed as
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[(
1

∆τ
+

1.5

∆t
)I − (

∂R

∂Q
)n+1,m]δQn+1,m+1 = Rn+1,m − 3Qn+1,m − 4Qn +Qn−1

2∆t
(14)

where the ∆τ is the pseudo time step, R is the net flux going through the control volume,

R = − 1

V

∫

s
[(F − Fv)i+ (G−Gv)j+ (H −Hv)k]·ds (15)

where V is the volume of the control volume, s is the control volume surface area vector. Equation
(14) is solved using the unfactored line Gauss-Seidel iteration. Two line sweeps in each pseudo
time steps are used, one sweeps forward and the other sweeps backforward. The alternative sweep
directions are beneficial to the information propagation to reach high convergence rate. Within
each physical time step, the solution marches in pseudo time until converged. The method is
unconditionally stable and can reach very large pseudo time step since no factorization error is
introduced.

2.3 The Zha E-CUSP2 scheme on a moving grid system

To clearly describe the formulations, the vectors Q and E′ in Eq. (1) are given below:

Q =















ρ̄
ρ̄ũ
ρ̄ṽ
ρ̄w̃
ρ̄ẽ















, E′ =
1

J
Ê, Ê =















ρ̄Ũ

ρ̄ũŨ + ξxp̃

ρ̄ṽŨ + ξyp̃

ρ̄w̃Ũ + ξz p̃

ρ̄ẽŨ + p̃Ū















(16)

Ũ is the contravariant velocity in ξ direction and is defined as the following:

Ũ = ξt + ξxũ+ ξyṽ + ξzw̃ (17)

Ū is defined as:

Ū = Ũ − ξt (18)

The Jacobian matrix Â is defined as:

Â =
∂Ê

∂Q
= T̂Λ̂T̂−1 (19)

where T̂ is the right eigenvector matrix of Â, and Λ̂ is the eigenvalue matrix of Â on the moving
grid system with the eigenvalues of:

(Ũ + C̃, Ũ − C̃, Ũ , Ũ , Ũ) (20)

where C̃ is the speed of sound corresponding to the contravariant velocity:
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C̃ = c
√

ξ2x + ξ2y + ξ2z (21)

and where c =
√
γRT is the physical speed of sound.

Due to the homogeneous relationship between Q and Ê, the following formulation applies:

Ê = ÂQ = T̂Λ̂T̂−1Q (22)

In an E-CUSP scheme, the eigenvalue matrix is split as the following:

Λ̂ =















Ũ − C̃ 0 0 0 0

0 Ũ 0 0 0

0 0 Ũ 0 0

0 0 0 Ũ 0

0 0 0 0 Ũ + C̃















= Ũ [I] +















−C̃ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 C̃















(23)

The grid velocity term ξt[I] due to the moving mesh is naturally included in the convective term,
Ũ , as given in Eq. (17). Therefore, Eq. (22) becomes:

Ê = T̂{Ũ [I] +















−C̃ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 C̃















}T̂−1Q = Êc + Êp

=















ρ̄Ũ

ρ̄ũŨ

ρ̄ṽŨ

ρ̄w̃Ũ

ρ̄ẽŨ















+















0
ξxp̃
ξyp̃
ξz p̃
p̃Ū















(24)

where Êc and Êp are namely the convective and pressure fluxes. As shown above, the way of
splitting the total flux into convective and pressure fluxes in an E-CUSP scheme is purely based
on the analysis of characteristics of the system. As shown in Eq. (24), the convective flux has
the upwind characteristic Ũ and is only associated with the convective velocity. The pressure flux
has a downwind and an upwind characteristic and it completely depends on the propagation of an
acoustic wave.

The Zha E-CUSP2 scheme is based on the E-CUSP scheme suggested by Zha and Hu [10], which
is extended to a moving mesh system by the following:

Ê 1

2

=
1

2
[(ρ̄Ũ) 1

2

(qc
L + qc

R)− |ρ̄Ũ | 1
2

(qc
R − qc

L)] +

6



















0

P+ ˜pξx
P+p̃ξy
P+p̃ξz

1

2
p̃(Ū + C̄ 1

2

)

















L

+















0
P−p̃ξx
P−p̃ξy
P−p̃ξz

1

2
p̃(Ū − C̄ 1

2

)















R

(25)

where

(ρ̄Ũ) 1

2

= (ρ̄LŨ
+
L + ρ̄RŨ

−
R ) (26)

qc =















1
ũ
ṽ
w̃
ẽ















(27)

C̃ 1

2

=
1

2
(C̃L + C̃R) (28)

M̃L =
ŨL

C̃ 1

2

, M̃R =
ŨR

C̃ 1

2

(29)

Ũ+
L = C̃ 1

2

{M̃L + |M̃L|
2

+ αL[
1

4
(M̃L + 1)2 − M̃L + |M̃L|

2
]} (30)

Ũ−R = C̃ 1

2

{M̃R − |M̃R|
2

+ αR[−
1

4
(M̃R − 1)2 − M̃R − |M̃R|

2
]} (31)

αL =
2(p̃/ρ̄)L

(p̃/ρ̄)L + (p̃/ρ̄)R
, αR =

2(p̃/ρ̄)R
(p̃/ρ̄)L + (p̃/ρ̄)R

(32)

P± =
1

4
(M̃ ± 1)2(2∓ M̃)± αM̃(M̃2 − 1)2, α =

3

16
(33)

C̄ = C̃ − ξt (34)

C̄ 1

2

=
1

2
(C̄L + C̄R) (35)

Please note that, in the energy equation of the pressure splitting, Ū and C̄ are used instead of Ũ
and C̃. The term C̄ is constructed by taking into account the effect of the grid velocity so that the
flux will transit from subsonic to supersonic smoothly. When ξt = 0, Eq. (25) naturally returns to
the one for a stationary grid.

For supersonic flow, when ŨL ≥ C̃, Ê 1

2

= ÊL; when ŨR ≤ −C̃, Ê 1

2

= ÊR.
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The original Zha-Hu scheme is found to have temperature oscillations near the solid wall region
when the grids is skewed. Therefore, the scheme used in the present study is the modified version
scheme, Zha CUSP2 scheme[9]. In this scheme, the total enthalpy instead of the static pressure is
used to calculate the numerical dissipation coefficients for the energy equation as below:

αL =
2(H̃/ρ̄)L

(H̃/ρ̄)L + (H̃/ρ̄)R
, αR =

2(H̃/ρ̄)R

(H̃/ρ̄)L + (H̃/ρ̄)R
(36)

Note that Equation (36) is only used for the energy equation. For the continuity and momentum
equations, Equation (32) is still used as the smoothing coefficient.

2.4 Boundary Conditions

The boundary conditions for the computation of wing flutter are as follows:

(1) Inlet boundary conditions: The far field boundary is divided into inlet and outlet boundaries.
On inlet boundary, it is assumed that the streamwise velocity u is uniform, transverse velocity v = 0,
and spanwise velocity w = 0. Other primitive variables are specified according to the freestream
condition except the pressure which is extrapolated from interior.

(2) Outlet boundary conditions: All the flow quantities are extrapolated from interior except
the pressure which is set to be its freestream value.

(3) Solid wall boundary conditions: At moving boundary surface, the no-slip condition is enforced
by extrapolating the velocity between the phantom and interior cells,

u0 = 2ẋb − u1, v0 = 2ẏb − v1, w0 = 2żb − w1 (37)

where u0, v0 and w0 denote the velocity at phantom cell, u1, v1 and w1 denote the velocity at the
1st interior cell close to the boundary, and ub, vb and wb are the velocity on the moving boundary.

If the wall surface is in η direction, the other two conditions to be imposed on the solid wall are
the adiabatic wall condition and the inviscid normal momentum equation[2] as follows,

∂T

∂η
= 0,

∂p

∂η
= −

(

ρ

η2x + η2y + η2z

)

(ηxẍb + ηyÿb + ηz z̈b) (38)

2.5 Moving/Deforming Grid Systems

In the fully-coupled computation, the remeshing is performed in each iteration. Therefore, a CPU
time efficient algebraic grid deformation method is employed in the computation instead of the
commonly-used grid generation method in which the Poisson equation is solved for grid points.
For clarity, the remeshing procedure for 2D cases is sketched in Figure 1. This grid deformation
procedure is designed in such a way that the far-field boundary (j=jlp) is held fixed, and the
grids on the wing surface (j=1) moves and deforms following the instantaneous motion of the wing
structure. After the new wing surface is determined, two components of the displacement vector
at wing surface node dx1 and dy1 can be calculated accordingly. First, the length of each segment
along the old mesh line is estimated as:
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sj = sj−1 +
√

(xj − xj−1)2 + (yj − yj−1)2 (j = 2, · · · , jlp) (39)

where s1 = 0 and the displacement vectors at wing surface node ( dx1, dy1 ) and at the far-field
boundary ( dxjlp, dyjlp ) are known. Then the grid node points between the wing surface and the
far-field boundary can be obtained by using following linear interpolation:

dxj =
dxjlp − dx1
sjlp − s1

sj +
dx1sjlp − dxjlps1

sjlp − s1
(40)

dyj =
dyjlp − dy1
sjlp − s1

sj +
dy1sjlp − dyjlps1

sjlp − s1
(41)

This simple remeshing strategy is proved to be robust for all the cases investigated in present
study. By monitoring the accuracy criterion y+, it is shown that the method can maintain the
initial grid quality and keep almost the same mesh distribution around the wing surface.

For 3D case, the Equation (42) becomes

sj = sj−1 +
√

(xj − xj−1)2 + (yj − yj−1)2 + (zj − zj−1)2 (j = 2, · · · , jlp) (42)

and one more equation is added to determined the z component of displacement vector:

dzj =
dzjlp − dz1
sjlp − s1

sj +
dz1sjlp − dzjlps1

sjlp − s1
(43)

2.6 Geometric Conservation Law

It was pointed out by Thomas et al.[14] that due to the mixed temporal and spatial derivatives after
discretization, an additional term appears, which theoretically equals to zero but numerically still
remains. Consequently numerical error could be introduced in the discretized form of the equations
of the flow motion if this term is neglected. In order to reduce or avoid this error, the geometric
conservation law needs to be enforced. In other words, the following additional term should be
added to the right-hand side of the equations as a source term:

S = Q

[

∂J−1

∂t
+

(

ξt
J

)

ξ

+

(

ηt
J

)

η

+

(

ζt
J

)

ζ

]

(44)

To implement this option in the flow solver, the source term is then linearized such that

Sn+1 = Sn +
∂S

∂Q
∆Qn+1 (45)

As has been observed in ref.[15], the overall performance of this numerical supplement is bene-
ficial with very little CPU time cost.
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3 Structural Model of Three Dimensional Wing

The governing equation of the solid structure motion can be written as,

M
d2u

dt2
+C

du

dt
+Ku = f (46)

whereM, C and K are the mass, damping, and stiffness matrices of the solid respectively, u is the
displacement vector and f is the force exerted on the surface node points of the solid, both can be
expressed as:

u =



















u1
...
ui

...
uN



















, f =



















f1
...
fi
...
fN



















,

where N is the total number of node points of the structural model, ui and fi are vectors with 3
components in x, y, z directions:

ui =







uix

uiy
uiz






, fi =







fix
fiy
fiz






.

fi is dynamic force exerted on the surface of the solid body. In a modal approach, the modal
decomposition of the structure motion can be expressed as follows:

KΦ =MΦΛ (47)

or

Kφj = λjMφj (48)

where Λ is eigenvalue matrix, Λ = diag[λ1, · · · , λj , · · · , λ3N ], and jth eigenvalue λj = ωj
2, ωj is the

natural frequency of jth mode, and the mode shape matrix Φ = [φ1, · · · , φj , · · · , φ3N ].

Equation (48) can be solved by using a finite element solver (e.g. ANSYS) to obtain its finite
number of mode shapes φj . The first five mode shapes will be used in this paper to calculate the
displacement of the structure such that,

u(t) =
∑

j

aj(t)φj = Φa (49)

where a = [a1, a2, a3, a4, a5]
T . Substitute Equation (49) to Equation (46) and yield

MΦ
d2a

dt2
+CΦ

da

dt
+KΦa = f (50)
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Multiply Equation (50) by ΦT and re-write it as

M̂
d2a

dt2
+ Ĉ

da

dt
+ K̂a = P (51)

where P = [P1, P2, · · · , Pj , · · · , PN ]T , the modal force of jth mode, Pj = φT
j f , the modal mass

matrix is defined as

M̂ = ΦTMΦ = diag(m1, · · · ,mj , · · · ,m3N ) (52)

where mj is the modal mass of jth mode, and the modal damping matrix is defined as

Ĉ = ΦTCΦ = diag(c1, · · · , cj , · · · , c3N ) (53)

where cj is the modal damping of jth mode, and the modal stiffness matrix is defined as

K̂ = ΦTKΦ = diag(k1, · · · , kj , · · · , k3N ) (54)

where kj is the modal stiffness of jth mode. Equation (51) implies

d2aj
dt2

+ 2ζjωj
daj
dt

+ ω2
jaj =

φT
j f

mj
(55)

where ζj is modal damping ratio. Equation (55) is the modal equation of structure motion, and is
solved numerically within each iteration. By carefully choosing reference quantities, the normalized
equation may be expressed as

d2aj

dt∗2
+ 2ζj

(

ωj

ωα

)

daj
dt∗

+

(

ωj

ωα

)2

aj = φ∗j
T
f∗V ∗

(

bs
L

)2 m̄

v∗
(56)

where the dimensionless quantities are denoted by an asterisk, ωα is the natural frequency in pitch,
bs is the streamwise semichord measured at wing root, L is the reference length, m̄ is the measured
wing panel mass, v∗ is the volume of a conical frustum having streamwise root chord as lower base
diameter, streamwise tip chord as upper base diameter, and panel span as height, V ∗ = U∞

bsωα
√
µ̄
,

and U∞ is the freestream velocity.

Then the equations are transformed to a state form and expressed as:

[M]
∂{S}
∂t

+ [K]{S} = q (57)

where

S =

(

aj
ȧj

)

, M = [I], K =





0 −1
(

ωj
ωα

)2

2ζ
(

ωj
ωα

)



, q =





0

φ∗j
T f∗V ∗

(

bs
L

)2
m̄
v∗



.

To couple the structural equations with the equations of flow motion and solve them implicitly
in each physical time step, above equations are discretized and integrated in a manner consistent
with Equation (14) to yield
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(

1

∆τ
I+

1.5

∆t
M+K

)

δSn+1,m+1 = −M3Sn+1,m − 4Sn + Sn−1

2∆t
−KSn+1,m + qn+1,m+1 (58)

where n is the physical time level index while m stands for the pseudo time index. The detailed
coupling procedure between the fluid and structural systems is given in the following section.

4 Fully Coupled Fluid-Structural Interaction Procedure

To rigorously simulate fluid-structural interactions, the equations of flow motion and structural
response need to be solved simultaneously within each iteration in a fully coupled numerical model.
The calculation based on fully coupled iteration is CPU expensive, especially for three dimensional
applications. The modal approach can save CPU time significantly by solving modal displacement
equations, Equation (55), instead of the original structural equations, Equation (48), which is
usually solved by using finite element method. In the modal approach, the structural mode shapes
can be pre-determined by using a separate finite element structural solver. Once the several mode
shapes of interest are obtained, the physical displacements can be calculated just by solving those
simplified linear equations, Equation (55) and Equation (49). In present study, the first five mode
shapes provided in Ref.[11] are used to model the wing structure. These pre-calculated mode shapes
are obtained on a fixed structural grid system and are transformed to the CFD grid system by using
a 3rd order polynomial fitting procedure. The procedure is only performed once and then the mode
shapes for CFD grid system are stored in the code throughout the simulation.

The procedure of the fully coupled fluid-structure interaction by modal approach is described
as follows:

(1) The flow solver provides dynamic forces on solid surfaces.

(2) Integrate fluid forces at each surface element to obtain the forcing vector f .

(3) Use Equation (55) to calculate modal displacements aj(j = 1, 2, 3, 4, 5) of the next pseudo
time step.

(4) Use Equation (49) to calculate physical displacement u of the next pseudo time step.

(5) Check the maximum residuals of both solutions of the flow and the structural equations. If
the maximum residuals are greater than the prescribed convergence criteria, go back to step (1)
and proceed to the next pseudo time. Otherwise the calculation of the flow field and the structural
displacement within the physical time step is completed and the next new physical time step starts.
The procedure can be also seen in the flow chart given in Figure 2.

5 Results and Discussion

The result of steady state transonic ONERA M6 wing is calculated first in order to validate CFD
solver. Then, the flutter boundary of an AGARD wing 445.6 is calculated.
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5.1 Steady State Transonic ONERA M6 wing

As a validation of the three dimensional solver for a transonic wing, the steady state solution of
the transonic ONERA M6 wing is calculated. The freestream conditions for this study are listed
in Table 1 below.

Table 1: Free-stream condition for ONERA M6 wing

Mach number 0.8395

Static Pressure (psia) 12.2913

Temperature (R) 447.0

Angle-of-Attack (deg) 0.0

Reynolds Number 19.7×106

This case is calculated using an O-type grid with the dimension of 144 (around wing) ×60
(normal to the wing) ×40 (spanwise). The far field boundary is located 15 chords away from the
chord center of the wing. The surface mesh of the wing is depicted in Figure 3.

The Zha E-CUSP2 scheme is used to evaluate the inviscid fluxes with the 3rd order MUSCL type
differencing [16]. The turbulent Reynolds stress and heat flux are calculated by the Baldwin-Lomax
algebraic model[12].

The computed surface pressure distributions at various cross sections are shown in Figure 4,
together with the experimental data given by Schmitt et al. [17]. The location of z/b = 0.2 is near
the root, and z/b = 0.99 is at wing tip.

Overall, very good agreement is obtained between the computation and experiment for each
cross-section.

5.2 Other Validations

The code has been intensively validated for the 2D fluid-structure interaction cases [18]. The modal
approach solver is validated with a finite element solver in [8]. The results agree excellently.

5.3 AGARD Wing 445.6 Flutter

The AGARD 445.6 wing is selected to demonstrate the capability of the present solver for predicting
the flutter boundary. This wing has a quarter-chord sweep angle of 45 degree, an aspect ratio of
1.65, a taper ratio of 0.6576, and a NACA65A004 airfoil section in the streamwise direction. The
weakened wing model (Model 3) listed in [11] is chosen for this study. The geometry of the wing
and its first six mode shapes as well as the experimental flutter results are also provided in the
same report [11]. The wing structure is modeled by its first five natural vibration modes in the
present computation.

The simulations start with the stationary rigid body wing model. After the steady state flow
field around the wing is fully developed, the rigid body wing is switched to the flexible wing model.
As a small imposed perturbation, the first mode displacement of the structural motion is set into
sinusoidal motion for one cycle with the maximum amplitude of 0.0005 - 0.001 and the first mode
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frequency of the wing. Then the wing is allowed to deflect in response to the dynamic force load.
Within each physical time step, the solution is usually converged within 50 iterations.

In Figures 5 through 7 the time histories of generalized displacements of the AGARD wing 445.6
atM∞ = 0.96 are plotted for three different V ∗. In these figures, from V ∗ = 0.26 to V ∗ = 0.315, the
plots correspond to the damped, neutral, and diverging responses, respectively. When the value of
V ∗ is smaller than the critical value on the flutter boundary, the amplitudes of all modes decrease
in time corresponding to the damped response as shown in Figure 5. Once the value of V ∗ coincides
with or is close to the critical value, the neutral response appears as shown in Fig. 6. When the
value of V ∗ is above the neutral stability point, the amplitudes of first five modes grow very fast,
a diverging response is reached as shown in Fig. 7.

For a given Mach number, several runs with different V ∗ are needed to determine the location of
the flutter boundary using bisection method. When V ∗ is varied, the free-stream Reynolds number
is changed accordingly. Strictly speaking, the free-stream Reynolds number needs to be updated
and the initial steady-state flow field with actual Reynolds number should be re-generated for each
run. In present simulation, the initial flow field and the Reynolds number remain unchanged when
V ∗ is varied since the effect on final solution due to small variation in the free-stream Reynolds
number is negligible when a turbulence model is used.

The comparison of computed flutter boundary and experimental data for AGARD Wing 445.6 is
illustrated in Figure 8. Overall, the computed results are in good agreement with the experimental
data. The “sonic dip” near Mach = 1.0 measured in the experiment is very well captured by the
computation. The discrepancy between computed results and experimental data may be due to
the inadequacy of the turbulent modeling to capture the shock/wave boundary layer interaction or
may be due to the inaccurate measurement in the experiment as suspected by some researchers.

6 Conclusion

An aeroelastic solver using the newly-proposed efficient high resolution Zha E-CUSP2 upwind
scheme for predicting 3-D wing flutter boundary has been developed. The 3D Reynolds average
Navier-Stokes equations are solved. Closure of the Reynolds stresses is provided by the Baldwin-
Lomax turbulence model. The modal approach solver is used to calculate the structural response
under aerodynamic forces with second-order accuracy. The CFD and structural solvers are fully
coupled implicitly via successive iterations within each physical time step. The numerical results
show that this method is capable of capturing the aeroelastic properties of the flexible wing ef-
ficiently. The computed flutter boundary of AGARD Wing 445.6 for free stream Mach numbers
ranging from 0.499 to 1.141 agrees well with the experiment.
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