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Abstract

The forced vibration of the 2D NASA flutter compressor cascade is numerically simulated in full scale with
parallel computation technique. The compressor cascade consists of 9 blades bounded by 2 wind tunnel side walls.
The implicit line Gauss-Seidel iteration with dual time stepping is employed. The turbulence is modeled with the
Baldwin-Lomax model. A newly developed high resolution efficient scheme, Zha-CUSP2 scheme, is applied to
compute the inviscid flux. The blades vibrate with a constant inter blade phase angle of 180 degree. The numerical
simulation is carried out at a zero degree incidence with reduced frequencies of 0.4, 0.8 and 1.2. The computed
unsteady pressure, aerodynamic moment and the local stability are compared with the experiment measurement.

1 Introduction
Flutter in axial turbomachines is a highly undesirable and dangerous self-excited blade oscillation mode that can result
in high cycle fatigue blade failure. Modern turbine engines employ transonic fan stages with high aspect ratio blades
that are prone to flutter. It is important to understand the origins of flutter for reliable and safe operation of these
engines.

Because flutter is a complicated nonlinear flow-structure interaction problem, the often used linearized methods
are not able to capture the strong viscous effects, such as the shock-boundary layer interaction and flow separations.
An accurate solver based on the time dependent fully nonlinear Navier-Stokes equations is highly desirable. However,
solving the fully nonlinear Navier-Stokes equations is time consuming and it becomes more difficult when all the
blades are vibrating in a full annulus. An often used method in studying the oscillating cascade is the phase-shifted
periodic boundary condition. This method solves a single passage by applying a ’direct store’ method[5] on its periodic
boundaries. However it assumes that the blades harmonically oscillate with a constant inter blade phase angle (IBPA)
and will not be able to handle more complicated conditions if the flow pattern varies across flow passages. For example,
stall flutter usually does not have periodicity and no constant IBPA exists. A more rigorous way is to calculate all the
passages together with full annulus and make the time marching synchronously.

The objective of this paper is to develop an efficient time dependent Navier-Stokes solver to calculate the fluid-
structure interaction of multi-blade passages using the parallel computation technique. The NASA flutter cascade
under investigation has 9 blades with wind tunnel walls. The blades vibrate with a constant IBPA[2]. The periodic
condition is not needed in the full scale simulation. This is the first step toward the full annulus 3D turbomachinery
computation of fluid-structure interaction. A new E-CUSP upwind scheme developed by Zha et al.[16, 17, 7] is applied
in the solver for its accuracy and efficiency. The strategy used in this paper is more rigorous than that used in reference
[14] to include the wind tunnel end wall, which plays an important role in the temporal and space periodicity in the
cascade experiment[3].

The present 3D Navier-Stokes solver has been successfully applied to 3D steady and unsteady studies with and
without flow separation phenomenon[9][8]. Parallel computation is implemented in this solver to simulate the multiple
passages simultaneously.�
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2 Governing Equations
The governing equations are the time dependent compressible Navier-Stokes equations. After normalization, the
Navier-Stokes equations are written in general coordinates as the following,

∂ Q
∂ t

� ∂ E
∂ ξ

� ∂ F
∂ η

� ∂ G
∂ ζ

� 1
Re

�
∂ R
∂ ξ

� ∂ S
∂ η

� ∂ T
∂ ζ � � D (1)

The equations is normalized based on the free stream variables, velocity U∞, density ρ∞, viscosity µ∞ and temper-
ature T∞. In Equation (1), Q is the vector of conservative variables,

Q � 1
J

������ ρ
ρU
ρV
ρW
ρE

	�



� (2)

E, F and G are the inviscid fluxes in ξ , η and ζ direction,

E � 1
J

������ ρU
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R, S and T are the viscous fluxes in ξ , η and ζ direction respectively,

R � 1
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� (4)

D is an additional term due to the geometric conservation law[4]. This term is theoretically equal to zero but numeri-
cally still remains.

D � Q � ∂J � 1

∂ t
� �

ξt

J � ξ

��� ηt

J � η

� �
ζt

J � ζ � (5)

In the above equations, ρ , u, v, w and p are the density, velocity components in x, y and z direction and the static
pressure. J � ∂


ξ � η � ζ ��� ∂ 

x � y � z � is the coordinates transformation Jacobian matrix. E is the total energy per unit
mass and is determined by

E � p
ρ

γ � 1 � � 1

2 � u2 � v2 � w2 � (6)

U , V and W are the contravariant velocities in ξ , η and ζ direction respectively:

U � ξt
� ξxu � ξyv

� ξzw (7)

V � ηt
� ηxu � ηyv

� ηzw (8)

W � ζt
� ζxu � ζyv

� ζzw (9)

βk is expressed as the following,
βk

� uτkx
� vτky

� wτkz � qk (10)

where qk is the heat flux in k � x � y � z direction.
The stress τi j is composed of the laminar part and the turbulent part. Both parts are determined by the main

stream flow gradient and the corresponding laminar or turbulent viscosity. The molecular viscosity is computed
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by the Sutherland’s law and the turbulent viscosity is computed using a two layer algebraic eddy viscosity model,
Baldwin-Lomax turbulence model[1]. The grid is specially treated in the near wall region to achieve the orthogonality
requirement of the turbulence model. The thermal transport coefficients for the heat fluxes in the laminar and turbulent
parts in the energy equation are determined by a laminar and a turbulent Prandtl number.

3 Numerical Methods
The governing equation (1) is solved with a finite volume technique and discretized in a node-centered form. On the
control volume interface, the inviscid fluxes are computed by the Zha-CUPS2 scheme[15]. Zha-CUSP2 scheme is a
E-CUSP scheme and the inviscid flux is split into convective and pressure vectors with the total energy included in
the convective part. This scheme has very low numerical dissipation. This scheme is consistent with characteristics
disturbance propagation direction and thus the high numerical stability and robustness are achieved. The Zha-CUSP2
scheme is also efficient in CPU usage because it only uses scalar dissipation instead of the matrix dissipation used by
schemes such as the Roe scheme[13]. The third order accuracy for the inviscid fluxes is employed with the MUSCL
extrapolation of van Leer[11]. The viscous fluxes are computed using the second order central differencing. The final
accuracy order in space is hence 2nd order.

3.1 Time marching scheme
The time marching of the time dependent governing equations (1) uses the technique of dual time stepping suggested
by Jameson[10]. A pseudo temporal term ∂ Q

∂ τ is added at the left hand side of the governing equations (1) and the
updated equations are solved implicitly using the line Gauss-Seidel iteration method. Within each physical time step,
iterations are carried out with the pseudo time until it is converged. The local time step technique is applied to
accelerate the convergence within each physical time step ∆t. Because the pseudo temporal term vanishes at the end
of each physical time step, it will not affect the accuracy of the solution. The physical temporal term ∂ Q

∂ t is discretized
implicitly using the following second order backward three point differencing scheme,

∂Q
∂ t

� 3Qn � 1 � 4Qn � Qn � 1

2∆t
(11)

where n � 1, n and n � 1 are sequential physical time level indexes. The pseudo temporal term ∂ Q
∂ τ is discretized

implicitly using the first order Euler scheme on the pseudo time index m and m � 1 within each physical time interval
∆t. The discretized governing equations are then written as the following,

� � 1
∆τ

� 1 � 5
∆t � I � �

∂RHS
∂Q � n � 1 �m � δQn � 1 �m � 1� RHSn � 1 �m � 3Qn � 1 �m � 4Qn � Qn � 1

2∆t
(12)

where I is the identity matrix, RHS is the net flux going through the control volume,

RHS � � 1
V � s   E � R � eξ

� 
F � S � eη

� 
G � T � eζ !#" ds � D (13)

where s is the control volume surface vector, eξ , eη and eζ are the unit vector in ξ , η and ζ direction, V is the volume
of mesh cell.

Within each pseudo time interval, the Gauss-Seidel iteration is swept line by line on each direction back and forth
once. The updated variables of the previous neighboring line are used immediately during the sweep as the Gauss-
Seidel iteration requires. The dual time stepping technique also has the advantage to facilitate information exchange
across the partitioned domain boundaries for parallel computation using implicit solver. The precise implicit treatment
at the partitioned domain boundaries is not required as long as the solution is converged within each physical time
step.
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3.2 Parallel computation
Multiple blade passages are computed in the vibrating cascade unsteady simulation. The computation domain is split
into a series of parallel passages roughly following the stream lines. The flowfields in the subdomains marches in time
synchronously with the technique of parallel computation. The current study is carried out in a Beowulf computer
system, which consists of a cluster of dual CPU Dell workstations. Each machine is equipped with two 2.8GHz CPUs
and a shared memory of 2G. All computers share the same home directory, where the executable code and the input
and output data are saved. The parallel computing CFD solver is implemented using the protocol of message passing
interface (MPI). During the simulation, each subdomain is assigned to a single CPU process. All subdomains are
solved simultaneously. After each pseudo time iteration, the information of two halo layers of flow variables and
grids at a boundary between two physical neighboring subdomains are exchanged using MPI. The solution for each
physical time step is considered to be converged when the maximum residual reaches the convergence criteria on all
subdomains. One of the CPUs works as the master for the parallel computation system, which determines physical
time step and controls the activities of all involved CPUs.

3.3 Moving grid system
To give even load for each CPU, the mesh in each subdomain has the same size. The mesh is H-type and is generated
by solving the elliptic Possion equation. Because of the high stagger angle of the cascade, the grid lines are highly
twisted. As suggested in reference[6], a boundary layer mesh is generated in the vicinity of the blade wall surface
using algebraic method. The grid lines are made either parallel or normal to the solid wall. This is preferred by the
Baldwin-Lomax model, in which the search of fmax and ymax following a line normal to the wall is required.

When the blades vibrate at a prescribed frequency, the mesh for each subdomain moves accordingly. The boundary
mesh layer is fixed to the wall surface and moves with the blade. The inner mesh has to be recalculated by solving the
elliptic Possion equation which is a time consuming process. The blades in the current study vibrate harmonically. The
meshes hence also vary harmonically and are repeated after each vibration cycle. The mesh generation time is reduced
by saving a series of meshes in a vibration cycle in advance and reusing them in the following vibration cycles. To
save the storage, meshes in 20 uniform time intervals are generated before the simulation starts. The meshes at any
time level during the vibration are linearly interpolated using the previously-generated meshes for all subdomains.

3.4 Boundary conditions
The boundary conditions involved in the simulation are the inlet, outlet, wall and MPI interface boundaries as shown
in Fig. 1. The flow at inlet is subsonic, thus the total pressure, total temperature and the flow angles are fixed at the
inlet boundary. The static pressure is extrapolated from the inner domain. The flow at the outlet is also subsonic. The
static pressure is specified at the outlet and all other variables are extrapolated from the inner domain. For the MPI
interface boundaries, two halo layers of mesh and flow variables are saved and exchanged between the two neighboring
subdomains after each pseudo time step via MPI.

At the moving boundary surface, the no-slip boundary condition is enforced by extrapolating the velocity between
the phantom cells and the inner cells. Take u as example,

uo
� 2uw � ui (14)

where uo and ui denote the velocity at the phantom cell and the first inner cell, uw is the velocity of the moving wall
surface. Two other conditions for temperature and pressure are also imposed on the solid wall. Take the lower wall in
η direction as example, the wall is treated as adiabatic and the temperature at the phantom cell is determined by

∂T
∂η

� 0 (15)

The inviscid normal momentum equation is used to calculate the pressure at the phantom cell as the following[12],

∂ p
∂η

� ��$ ρ
η2

x
� η2

y % 
ηxu̇w

� ηyv̇w � (16)

where u̇w and v̇w are the accelerations of the moving grid.
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3.5 Parameters used in flow analysis
The steady state static pressure coefficient is defined as the following,

Cp

x � c � � p


x � c �&� p∞
1
2 ρ∞U2

∞
(17)

where p∞, ρ∞ and U∞ are the averaged pressure, density and velocity at inlet.
The blades vibrate harmonically with a constant IBPA. The motion of the nth blade is defined by the blade deflec-

tion angle[2],
αn  t � � α0

� α̂Re ' exp

i

ωt � nβ �(�*) (18)

where n is the blade index, t is the time, α0 is the deflection angle at the mean blade position, α̂ is the amplitude of
blade deflection, Re denotes the real part of a complex value, ω is the angular frequency, β is the inter blade phase
angle.

The reduced frequency kc is defined based on the chord length C as the following,

kc
� ωC

U∞
(19)

The first harmonic unsteady pressure coefficient is defined as,

Cp

x � � p1


x �

ρ∞U2
∞α̂

(20)

where p1

x � is first harmonic pressure along the blade surface. It is a complex value obtained from the unsteady

pressure signals using the Fourier transformation. p1

x � has a phase angle relative to the blade motion α .

The time dependent aerodynamic moment coefficient is defined as,

Cm

t � � � � r + p


x � ds

1
2 ρ∞U2

∞α̂
(21)

where p

x � is the unsteady pressure along the blade surface, s is the surface area vector pointing outward from the

blade, r is the vector pointing from the pivot location to an arbitrary point x on the surface.
The imaginary part, or the out of phase part of the unsteady pressure determines the damping or excitation of the

blade motion. The aerodynamic damping coefficient is defined as,

Ξ � � Im

Cm � (22)

where Im denotes the imaginary part of a complex value. A positive Ξ corresponds to a damped oscillation.

4 Results and Discussions
The NASA Lewis Oscillating Cascade test section consists of 9 identical airfoils with the cross section similar to the
tip airfoil of modern low-aspect ratio fan blades[2]. The airfoil has a chord of 8.89 cm and is installed with a stagger
angle of 60 , . The solidity is 1.52. In the experiment, the inlet Mach number is 0.5. All blades vibrate simultaneously
along a pitching axis at 0.5 chord with a constant IBPA of 180 , . The oscillating amplitude is 1.2 , and the reduced
frequency based on chord varies at 0.4, 0.8 and 1.2. The blade motion is identical on every other blade. The two
neighboring blades always vibrate in opposite direction.

The inlet Mach number Ma = 0.5 is achieved by adjusting the outlet static pressure level. The Reynolds number
based on the chord length is 9 + 105. The flow incidence is 0 , . For the unsteady dual-time stepping, one physical
blade oscillation cycle is divided into 100 time intervals and 100 pseudo time Gauss-Seidel iterations are carried out
for each physical time step. The 100 pseudo time iterations are proved to be sufficient to obtain a converged solution
within a physical time step with the residual reduced by 3 orders in magnitude. Before the unsteady simulation,
the corresponding steady state calculation is carried out to obtain the initial flow field for the unsteady computation.
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The inlet flow angle is adjusted to 61 , to obtain good agreement with the steady state experimental surface pressure
distribution.

Before the full scale computation, a simplified 2-passage cascade is computed with a reduced frequency of kc =
0.8 by applying the periodic boundary condition. The information of the moving mesh and the conservative variables
are exchanged across the periodic boundary. The multi-passage full scale simulation is then conducted for the 9-blade
cascade with the wind tunnel side walls for more realistic results. The periodic boundary condition is not needed.
The vibration frequencies of kc=0.4, 0.8 and 1.2 are calculated and compared with the experiment measurement. The
influence of the end walls are studied by comparing the results of kc=0.8 from both simulations.

4.1 Computation domain decomposition and mesh generation
As shown in Fig. 1, the computation domain which is consistent with the experiment configuration is split into 10
subdomains based on flow passages P1 through P10. The 10 subdomains are computed by 10 CPUs running in
parallel. The subdomains are separated from their neighbors by the blade surfaces B1 through B9 and the MPI interface
boundaries. The MPI interface boundaries are straight lines passing through the leading edge (LE) and trailing edge
(TE) of the blades with appropriate angles in accord with the local flow direction. The pitchwise distance between the
end wall and the blade is half of the inner pitch distance. The US (upper surface) is the suction surface and LS (lower
surface) is the pressure surface.

The inlet and outlet boundaries are set as 1.5 and 3 times chord length away from the airfoil LE and TE in axial
direction. A part of the mesh is shown in Fig. 2 with the regions of LE and TE zoomed in for more details. The
H-type mesh is generated for each subdomain respectively. Each subdomain shares the grid point distribution on
the common MPI interface boundaries with its neighbors. To achieve good orthogonality on the blade surface, an
additional algebraic boundary layer mesh is generated in the wall surface region. As shown in Fig. 2, the grid lines
are orthogonal on all blade surfaces except the small regions at LE and TE. The mesh size is 195(ξ ) + 180(η) for all
subdomains. For clarity, the mesh is plotted every 4 lines in the un-zoomed plots. The blade surface has 100 points
in streamwise direction. The boundary layer has 40 points in pitchwise direction. Because of the high gradient of the
flow variables in near wall region, the mesh is clustered near the wall surfaces. On the blade surfaces, the grid points
are also clustered toward the LE and the TE in streamwise direction.

4.2 Simulation in two passage cascade
The two passage cascade simulation uses the meshes of two inner neighboring passages (P2 and P3) in the compressor
cascade. As shown in Fig. 3, The blade between the two passages is called BC (blade at center) and the two blade
surfaces on the two outside periodic boundaries are treated as blade BP (blade at periodic boundary) .

The steady state pressure coefficient distributions along the blade surfaces are plotted in Fig. 4. The pressure
coefficient predicted agrees well with the measurement. The result on BC agrees very well with that of BP, which
shows good periodicity is achieved on the pitchwise direction.

Fig. 5 shows the pressure variation history on two points on the suction surface (US) and the pressure surface (LS)
respectively. The pressure on the suction surface is located at x � C = 0.15 and the pressure on the pressure surface is
located at x � C = 0.1. The temporal periodicity is achieved very soon after the start of the vibration simulation. Because
of the excellent temporal periodicity, the unsteady data extracted from a single blade motion cycle is enough for the
unsteady Fourier analysis. The IBPA of 180 , is clearly shown by comparing the pressure maximums and minimums
on BC and BP.

The unsteady pressure coefficients are plotted in Fig. 6 and Fig. 7 for suction surface (US) and the pressure surface
(LS) respectively. The unsteady pressure coefficient Cp is expressed in terms of the real part or in phase part and the
imaginary part or out of phase part. On the suction surface, as shown in Fig. 6, the CFD results compare fairly well
with experiment data after 30% chord. The real part of the coefficient is predicted lower than experiment data on
leading edge, but the trend agrees very well with the experiment. The imaginary part is over predicted in the leading
edge region. On the pressure surface, as shown in Fig. 7, the real part of the unsteady pressure coefficient agrees well
with the experiment data. The imaginary part is under predicted compared with the measurement on the front part
of the blade. This means that the CFD does not accurately capture the phase angle difference between the pressure
response and the blade motion. A local flutter stability analysis based on the aerodynamic work per cycle suggested
by Buffum[2] is presented in Fig. 8 by plotting � 0 � 5 � x

c
� Im � Cp � upper � Cp � lower � 1st

. The current numerical simulation
predicts a larger local stable region on the front part of the blade. On the aft part, the experiment data indicates a
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shallow stable region. The CFD predicts the trend very well. The aft part stable region is predicted more shallow than
the experiment.

4.3 Simulation in full scale cascade
The full scale steady and unsteady simulation use the same inlet flow angle as that of the 2-passage case. In the steady
state calculation, all blade are parallel to each other at their mean positions. As shown in Fig. 1, the end wall is made
up of 3 sections, which have different angles relative to the x axis: α1

� 61 , , α2
� 60 , and α3

� 64 , . The middle
section is parallel to the blade at its mean position. The front and aft sections follow the inlet and outlet averaged flow
directions obtained in the 2-passage steady state computation.

The steady state Mach number contours for the full scale cascade is shown in Fig. 9. The flow pattern is highly
influenced by the end wall especially for the near end wall passages, P1 and P10. The influence is reduced rapidly from
the boundary passages to the inner passages. Good periodicity in flow pattern is achieved among the inner passages
(P3 through P8). Three center blades, B4, B5 and B6 are chosen to study the steady and unsteady periodicity in the
rest of the paper. Even though the periodicity looks good in the Mach contour plot, the static pressure distribution still
shows the influence of the end walls on different blades.

Fig. 10 shows the pressure coefficient chordwise distribution on the 3 center blades. The experiment measurement
and the 2-passage calculation results are also plotted for comparison. The surface pressure increases gradually from
B4 to B6 on both the pressure surface and the suction surface. The pressure distribution on blade B6 is closest to
the 2-passage periodic results on most part of the surfaces. The experiment measurement also shows the pressure
variation on different blades[2], but its variation trend is opposite to the current numerical results. A possible reason
for this difference is that the inlet and outlet end wall angles used in the experiment may differ from the values used
in the current simulation. The experimental angles are not available. Such a pitchwise flow pattern difference is also
expected in the following unsteady calculations.

The full scale unsteady simulation is first carried out for a reduced frequency kc = 0.8 to study the end wall
influence on the periodicity of the blade unsteady characteristics. Figs. 11 and 12 are the unsteady pressure coefficient
chordwise distribution on the 3 center blades compared with the 2-passage cascade and the experiment results. On
the upper surface, as shown in Fig. 11, the 3 blades have very similar unsteady coefficients on most of the chordwise
distance. The results of blade B6 are closest to those of the 2-passage calculation. The difference between the full
scale results and the 2-passage results mainly locate at the front and center part of the blade. The full scale results
agree with the experiment better in the center part. On the lower surface, as shown in Fig. 12, the full scale results of
the 3 blades are similar. The 2-passage results are closer to the experiment data in the real part.

As shown in Fig. 13, the full scale calculations predict higher stability on the front part of the blade compared
with the 2-passage results. The full scale results are closer to the experiment measurement on the aft part of the blade.
In the chordwise region of x � C = 0.5 to x � C=0.7, the measured stability is better predicted in the full scale results.
The 2-passage results shows instability in the same region. The end wall influence on the flow pattern periodicity is
clearly shown in the unsteady aerodynamic moment oscillation plots within a whole blade motion cycle in Fig. 14. The
moment is plotted versus the normalized deflection angle, α - � � α � α0

� � α̂ . Because of the end wall influence, the
moment oscillations on the 3 center blades are different. They are also different from the 2-passage calculation results.
The anti-clockwise direction of all the unsteady moment curves indicates negative work acted by the fluid on the
blade. The blade motion is therefore damped down by the fluid flow. The blade motion is stable, which corresponds
to a positive damping coefficient Ξ. The area enclosed by the moment curve indicates the magnitude of the work
exchanged between the fluid and the blade, which is also proportional to the magnitude of the damping coefficient.

The damping coefficients on all the 9 blades in the full scale calculation versus the blade number are shown in
Fig. 15. The damping coefficient varies among the blades. The damping coefficients for blade B4, B5 and B6 are
0.67, 0.65 and 0.68 respectively. Blade B1 has the lowest stability (Ξ � 0.45) and blade B9 has the highest stability
(Ξ = 1.4). The damping coefficient distribution is more uniform on the center blades (B3 through B7), even though
small variation exists. The blade stability in the full scale cascade depends on the location of the blade. The damping
coefficient obtained in the 2-passage periodic computation is 0.55.

Fig. 16 plots a series of Mach number contours around blade B5 and B6. A separation bubble is generated
and grows periodically on the leading edge of the suction surface. At t � 0, the two blades are initially located at
their mean positions and are parallel to each other. Blade B5 then rotates in the counter-clockwise direction with
a negative deflection angle (nose down). At the same time, blade B6 is rotating in the clockwise direction with a
positive deflection angle (nose up). At t=0.2T, blade B5 is close to its minimum deflection position. The separation
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bubble at its LE is pushed downstream and shrinks in size. At t=0.4T, blade B5 is rotating back from its minimum
deflection location toward its mean position, the separation bubble disappears from the suction surface. At t � 0.8T, a
new separation bubble is generated when blade B5 passes its maximum deflection position and rotates back toward its
mean position. The bubble obtains its maximum size when the blade is close to its mean position. Similar phenomenon
is observed on the neighboring blade B6, but with a phase difference of 180 , .

More extensive unsteady simulations are carried out for reduced frequencies kc
� 0.4 and kc = 1.2. Figs. 17 and

18 show the unsteady pressure coefficient chordwise distribution of kc
� 1.2. Similar to the results of kc

� 0 � 8, the
predicted unsteady complex pressure coefficients are close to each other on the 3 center blades, even though some
small difference exists. As shown in Fig. 17, on the upper surface, the imaginary parts of CFD results agree very well
with the experiment results except that it is over-predicted in the region of x � C=0.15 to x � C=0.40. The real part is also
predicted quite well on the middle and aft part of the blade. On the lower surface, as shown in Fig. 18, the predicted
real parts compare very well with experiment. The Imaginary part is under-predicted from LE to x � C = 0.7.

The local stability analysis for kc = 1.2 is plotted in Fig. 19. The correct trend is predicted compared with the
experiment measurement, even though the magnitude does not agree very well. The stability is over-predicted in LE
region. The unstable region predicted on the front part of the blade is smaller than the experiment results. The stability
is predicted on the aft part, but the magnitude is smaller than the experiment data. The damping coefficients for all the
blades are plotted in Fig. 20. The damping coefficients for blade B4, B5 and B6 are 0.81, 0.78 and 0.84 respectively.
The stability increases with the frequency. Similar to the results of kc = 0.8, the most stable blade is blade B9 (Ξ=1.5)
and the least stable blade is blade B1 (Ξ=0.6). The damping coefficient is more uniformly distributed on the central
blades. The variation of the damping coefficient on the center blades increases with the increasing frequency.

Because of the lack of experiment data, the unsteady pressure coefficient of kc=0.4 is not presented for comparison.
However, the local stability is analyzed and compared with the experiment data in Fig. 21. Similar to the results of kc =
0.8 and kc

� 1.2, the trend is predicted well, but the magnitude differs from the experiment. As expected, the damping
coefficient distribution is more uniform on center blades (Fig. 22). The variation of their magnitudes decreases with
the decreasing vibration frequency compared with the high frequency cases of kc = 0.8 and kc = 1.2. The damping
coefficients on blade B4, B5 and B6 are 0.448, 0.446 and 0.434 respectively. The most stable blade is B9 with Ξ =
1.02 and the least stable blade is B1 with Ξ = 0.28.

The unsteady aerodynamic moment oscillations on blade B5 under the 3 frequencies under investigation are plotted
together and compared in Fig. 23. The damping coefficient increase with the increasing frequency is indicated by the
increased area enclosed by the unsteady moment oscillation curve. The local stability analysis is summarized for all the
3 frequencies in Fig. 24. The computation results indicate higher stability near the leading edge for higher frequency
vibration, which is consistent with the experiment measurement. Even though the destabilization region on the front
part of the blade and the stability magnitude on the aft part of the blade predicted by the numerical computation are
smaller than those in the experiment, the trend is predicted well. Both the destabilization and stabilization increase
with the increasing frequency.

5 Conclusions
The fully nonlinear time dependent Navier-Stokes equations are solved with the parallel computation technique to
simulate the unsteady flow field in a full scale compressor cascade with forced blade vibration. The calculation in this
paper is conducted with a low incidence of 0 , and a subsonic inflow M= 0.5. The blade motion amplitude is 1.2 , and
the inter blade phase angle is 180 , . The full scale computation is carried out for 3 reduced frequencies, 0.4, 0.8 and
1.2. The blade stability under different vibration frequency is analyzed. The end wall influence on the steady and
unsteady flow characteristics is studied by comparing the full scale results with the 2-passage periodic cascade results
at kc =0.8. The conclusions are the following:

1. The flow pattern in the full scale cascade shows that the flowfield is affected by the existence of the end walls.
The steady state blade surface pressure varies with the the blade position in the cascade. The periodicity of
the flow pattern is improved by adjusting the end wall configuration. The end wall influence attenuates rapidly
from boundary passages to center passages. Good periodicity is achieved in the inner passages. The full scale
computation gives better results of the unsteady pressure coefficient, local stability and aerodynamic moment
among the center blades.

2. All blades in the full scale cascade are stable, which is indicated by a positive damping coefficient. The damping
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coefficient is more uniformly distributed on center blades. The most stable and the least stable blades are the two
boundary blades. The damping coefficient and its variation across the center blades increase with the increasing
vibration frequency.

3. The unsteady pressure coefficients are predicted well compared with the experiment measurement. The local
stability trend is correctly predicted in the numerical computation. The blade local stability is over-predicted
on LE and under-predicted on the aft part. The destabilization region located at the front part of the blade is
predicted smaller compared with the experiment. The predicted stabilization and destabilization increase with
the increasing frequency, so do the damping coefficients.
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� 1.2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  2  4  6  8  10

Ξ

Blade

kc=1.2

Figure 20: Damping coefficient distribution, kc
� 1.2

13



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

(0
.5

-x
/C

)Im
(∆

C
p)

kc=0.4

Unstable

Stable

Blade B4
Blade B5
Blade B6
Exp

Figure 21: Local stability analysis, kc
� 0.4

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  2  4  6  8  10

Ξ

Blade

kc=0.4

Figure 22: Damping coefficient distribution, kc
� 0.4

-2

-1.5

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

C
m

α’

Blade B5

kc=1.2
kc=0.8
kc=0.4
start point

Figure 23: Unsteady aerodynamic moment oscillation
comparison

-4

-3

-2

-1

 0

 1

 2

 3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

(0
.5

-x
/C

)Im
(∆

C
p)

x/C

CFD, kc=0.4
CFD, kc=0.8
CFD, kc=1.2
Exp, kc=0.4
Exp, kc=0.8
Exp, kc=1.2
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