
Improved Delayed Detached Eddy Simulation of AGARD Wing
Flutter with Fully Coupled Fluid-Structure Interaction

Purvic Patel∗ and Gecheng Zha†

Dept. of Mechanical and Aerospace Engineering
University of Miami, Coral Gables, Florida 33124

E-mail: gzha@miami.edu

The Shear Stress Transport model based improved delayed detached eddy simulation of the
AGARD Wing 445.6 is performed at the subsonic, transonic and supersonic flow with high order
shock capturing schemes. An implicit unfactored Gauss-Seidel line iteration scheme is used to
solve the compressible, filtered Navier-Stokes equations. The flow solver and the modal form
structural solver utilize the dual time-stepping scheme to achieve fully coupled fluid-structural
interaction via successive iterations using a pseudo time step. The LES sub-grid length scale
based on the vorticity aligned with a grid line is used to overcome the standard sub-grid length
scale’s delayed flow transition problem. The predicted flutter boundary agrees well with the
experiment at different Mach numbers, including the supersonic flow where the traditional
RANS methods over-predict the flutter velocity index and frequency. At the transonic and
supersonic flow, the torsional mode generalized displacement is decreased due to the shock
oscillations over the suction and pressure surface of the wing. At the flutter boundary, no flow
separation is observed at different Mach numbers.

I. Nomenclature

!∞ = Reference length
d∞ = free stream density
*∞ = free stream velocity
`∞ = free stream dynamics viscosity
2∞ = free stream speed of sound
"∞ = free stream Mach number
3 = Distance from the nearest wall
Ω = Vorticity magnitude
( = Strain rate magnitude
%A = Prandtl number
'4 = Reynolds number
8, 9 , : = Dummy indices for Indicial/Einstein summation notation
^ = von Karmann constant
X8 9 = Kronecker delta
ΔC = Physical time step
*, +, , = Contravariant velocities in b, [ and Z directions
: = Turbulence kinetic energy (:)
l = Turbulence specific dissipation rate (l)

II. Introduction
Aeroelasticity is the science of studying the combined effect of inertia, elastic and aerodynamic forces on the flexible

body due to the surrounding fluid’s relative motion. Modern high-speed aircraft is made of thin, flexible structures to
reduce the wave drag and its overall weight. These flexible wing structures are subjected to various loading conditions
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during the entire flight envelope and maneuvering. Therefore, their aeroelastic analysis is vital from the design phase to
reduce later design modifications and experimental tests.

In the case of self-excited vibration (i.e., flutter), the aircraft wing vibrates at a natural frequency due to flow
instabilities generated by the vibrating wing. The aerodynamic force feeds energy to the wing structure with each
vibration cycle. With the insufficient overall damping, the amplitude of vibration increases with cycle and the wing
structure integrity is eventually compromised, leading to the catastrophic outcome. At the flutter boundary, the wing
experiences Limit-Cycle Oscillation (LCO), which can lead to the wing’s fatigue failure. Below the flutter boundary, the
vibrations are damped out.

The wing flutter boundary is a function of the flight Mach number, mass ratio and the angle-of-attack. Dynamic
pressure at flutter decreases with increasing Mach number to the lowest value in the transonic flow regime [1]. This
transonic dip is associated with the inherent non-linear flow features like shock waves, boundary layer, etc. [2] leading
to non-linear wing response, which linear perturbation theory fails to predict accurately. The severity of the flutter
boundary dip prediction is vital for safe flying conditions. The linear analysis adequately predicts the flutter boundary in
the subsonic and supersonic flow [3]. However, the over-prediction of the flutter boundary increases with the increasing
supersonic flow Mach number. The inclusion of the viscosity effect improves the flutter boundary prediction at the
supersonic flow, where structural damping and number of structural modes have a lesser effect [4].

The Flutter characteristics of the AGARD standard aeroelastic wing case, Wing 445.6, has been studied by many
researchers using different approaches over the years. Cunningham et al. [5] used the transonic small disturbance
equation and the full potential equation to investigate the flutter characteristics of the AGARD Wing 445.6. Rausch et al.
[6] and Lee-Rausch et al. [7] used the Euler equations to compute the complete flutter boundary. Their results show
good agreement with the experimental results below free stream Mach number of one and a sudden rise in the flutter
boundary above one. A later study by Lee-Rausch et al. [4] shows that the viscosity inclusion delays the rise in the flutter
boundary on the supersonic side and thereby improves the prediction. Opgenoord [8] attributes the transonic flutter dip
to the phase lag aerodynamic response. This lagged response is the effect of lagged information travel between the point
near the leading and trailing edge of a wing in the presence of supersonic flow region between them.

In the time-marching Navier-Stokes solver, Reynolds-Averaged Navier-Stokes (RANS) equations are often solved to
predict and include the viscosity effect. The compressible RANS approach is widely used for the compressible attached
flow simulation due to its superiority in terms of computational cost and storage requirements in comparison to Direct
Numerical Simulation (DNS) or Large Eddy Simulation (LES) [9]. However, their underlying feature of modeling the
entire turbulence spectrum adversely affects their accuracy for the flow involving boundary layer separation, shock-wave
boundary layer interaction, etc. On the other hand, LES resolves a large portion of the turbulence spectrum representing
the large energy-containing eddies and models the effect of small isotropic eddies. However, their high computational
cost impedes the use of LES for high Reynolds number industrial applications.

In the hybrid RANS/LES approach, the RANS is used to model the boundary layer, whereas the LES is used
outside the boundary layer. Therefore, it combines the advantages of both approaches in terms of resolving large
energy-containing eddies with the LES and reducing the computational cost by modeling the boundary layer with
the RANS. In 1997, Spalart et al. [10] proposed the first Detached Eddy Simulation based on the one-equation
Spalart-Allmaras (SA) model, commonly referred as DES97. The DES97 model switches from RANS to LES based on
the local grid step size. This explicit switch causes the Grid Induced Separation under the extreme case of Modeled
Stress Depletion (MSD) [11, 12]. To overcome DES97’s Modeled Stress Depletion (MSD) problem, Strelets [13] and
Menter et al. [14] proposed a zonal DES formulation based on the two-equation Shear Stress Transport (SST) model by
shielding the boundary layer from the DES limiter. Spalart et al. [12] later proposed non-zonal Delayed Detached Eddy
Simulation (DDES) deriving an idea of shielding the boundary layer from Menter et al. [14]. Their shielding function
formulation depends on the eddy viscosity and the nearest wall distance and it can be used with any turbulence model
involving eddy viscosity. Nikitin et al. [15] observed mismatch between modeled and resolved log layer, termed as Log
Layer Mismatch (LLM), with the use of DES97 for wall-modeling in LES (WMLES) in the planar channel flow. Later,
Shur et al. [16] proposed the Improved Delayed Detached Eddy Simulation (IDDES) aimed at wall modeling in the
LES (WMLES) and it also addresses the LLM and MSD problem faced by the DES97 and DDES. Gritskevich et al.
[17] revisited and recalibrated the shielding functions of DDES and IDDES models combined with the SST turbulence
model.

The non-zonal DES and DDES based hybrid RANS/LES model suffers from the Grey Area (GA) problem, i.e., the
transition region between the RANS and LES model. The length and extent of this region is the case and numerical
scheme sensitive, in addition to the underlying RANS model [13, 18–21]. To mitigate this problem, various hybrid
models are developed along with different LES filter width and other techniques like Synthetic Turbulence Generator
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(STG). In the present study, the vorticity aligned with a grid line based on Chauvet et al. [22] is used with the
SST-IDDES model to mitigate the GA problem of the standard LES sub-grid length scale based on Δ<0G .

Chen et al. [23], Im et al. [24] and Gan et al. [25] have investigated the AGARD Wing 445.6 flutter boundary using
the DDES based on the SA model. They have used the low diffusion, high-order shock-capturing 5th order Weighted
Essentially Non-Oscillatory (WENO) scheme for inviscid fluxes. Their results have shown accurate prediction of the
flutter boundary at transonic and supersonic flow for the first time. Šekutkovski et al. [26] have proposed and applied
Scale-Adaptive Improved Delayed Detached Eddy Simulation based on the SST model (i.e. : − l SST SA IDDES) to
AGARD 445.6 wing flutter boundary prediction. Their results agree well at the supersonic flow. In contrast, the flutter
boundary is over-predicted by more than 7 % and 10 % at transonic and subsonic flow, respectively. It is similar to the
SST and SA model prediction.

The purpose of this paper is to calculate the AGARD wing flutter boundary using higher-order schemes and
SST-IDDES [27] with a fully coupled FSI simulation to examine the robustness and accuracy of the methodology. This
is an important step to advance the high fidelity hybrid RANS/LES methodology to the challenging aeroelasticity field,
which often involves complex shock boundary layer interaction and vortical flows. The Roe’s approximate Riemann
solver is used to calculate the inviscid flux with the 5Cℎ order WENO scheme and the 4Cℎ order central differencing
scheme for the viscous flux. The predicted flutter boundary agrees well with the experiment.

III. Numerical Model for Flow
The unsteady, Favre-filtered, compressible Navier-Stokes equations can be written in the nondimensional form using

the generalized coordinates (b, [, Z) as:

mQ
mC

+ mE
mb

+ mF
m[

+ mG
mZ

=
1
'4

(
mR
mb

+ mS
m[

+ mT
mZ

)
(1)

where, '4 is the Reynolds number. The equations are normalized using the reference length (!∞), free stream
density (d∞), velocity (*∞) and dynamic viscosity (`∞). The conservative variable vector Q and inviscid flux vectors
E, F, G and viscous flux vectors R, S, T through the cell interface with the normal in the positive b, [, Z direction,
respectively are expressed as:

Q =
1
�

©«

d

dD̃

dẼ

dF̃

d4̃

ª®®®®®®®¬
, E =

©«

d*

dD̃* + ;G ?

dẼ* + ;H ?

dF̃* + ;I ?

(d4̃ + ?)* − ;C ?

ª®®®®®®®¬
, F =

©«

d+

dD̃+ + <G ?

dẼ+ + <H ?

dF̃+ + <I ?

(d4̃ + ?)+ − <C ?

ª®®®®®®®¬
, G =

©«

d,

dD̃, + =G ?

dẼ, + =H ?

dF̃, + =I ?

(d4̃ + ?), − =C ?

ª®®®®®®®¬
(2)

R =

©«

0
;: g̃G:

;: g̃H:

;: g̃I:

;: ( D̃8 g̃:8 + @̃: )

ª®®®®®®®¬
, S =

©«

0
<: g̃G:

<: g̃H:

<: g̃I:

<: ( D̃8 g̃:8 + @̃: )

ª®®®®®®®¬
, T =

©«

0
=: g̃G:

=: g̃H:

=: g̃I:

=: ( D̃8 g̃:8 + @̃: )

ª®®®®®®®¬
(3)

where � is the coordinate transformation Jacobian, d is the density, ? is the static pressure and 4 is the total internal
energy per unit mass. The overbar denotes Reynolds averaged and tilde represents the Favre filtered variable. The
contravariant velocities (Eq. (4)) through each cell interface are defined as:

* = ;C + l • V = ;C + ;G D̃ + ;H Ẽ + ;I F̃

+ = <C + m • V = <C + <G D̃ + <H Ẽ + <I F̃

, = =C + n • V = =C + =G D̃ + =H Ẽ + =I F̃

(4)

where, l, m, n represent the normal vectors with their magnitudes equal to the elemental surface areas and pointing
in the positive b, [, Z directions respectively. These vectors are calculated at the cell interface center and written as:

l =
∇b
�
, m =

∇[
�
, n =

∇Z
�

(5)

3

D
ow

nl
oa

de
d 

by
 G

ec
he

ng
 Z

ha
 o

n 
Fe

br
ua

ry
 1

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

03
65

 



and the grid moving velocities are defined as,

;C =
bC

�
, <C =

[C

�
, =C =

ZC

�
(6)

Let the subscripts 8, 9 , : represent the coordinates G, H, I. Using the Einstein summation convention, the total
shear stress (g̃8: ) and the total heat flux (@ 9 ) for turbulent flow are given by:

g̃8: = (` + `����()
[ (

mD̃8

mG:
+ mD̃:

mG8

)
− 2

3
X8:

mD̃ 9

mG 9

]
− 2

3
X8: d:̃'4

@̃ 9 = − 1
(W − 1) "2

∞

(
`

Pr
+ `����(

PrC

)
m)̃

mG 9

(7)

where, ` is the molecular viscosity, "∞ is the free stream Mach number. The molecular viscosity is determined
using Sutherland’s law. The turbulent viscosity `����( is computed based on the SST-IDDES turbulence model
explained in the following section. The equation of state relating the dimensionless density, pressure and temperature is
given as,

d4̃ =
?

W − 1
+ 1

2
d

(
D̃2 + Ẽ2 + F̃2

)
+ d:̃ (8)

For the simplicity, all the bar and tilde in above equations will be dropped in the rest of this paper.

A. Improved Delayed Detached Eddy Simulation (IDDES)
Gritskevich et al. [17] proposed an advanced hybrid RANS/LES turbulence, the improved delayed detached eddy

simulation based on the Shear Stress Transport (SST) model. The model solves two additional transport equations, i.e.,
for the turbulence kinetic energy (:) and the turbulence specific dissipation rate (l), to calculate the eddy viscosity
(`����(). In the generalized coordinates, the nondimensional conservative form of the SST-IDDES model’s transport
equations are given by:

m 1
�
d:

mC
+ md:*

mb
+ md:+

m[
+ md:,

mZ
=

1
'4

[
m

mb
( (` + f:`����() (l • ∇:))

+ m

m[
( (` + f:`����() (m • ∇:)) + m

mZ
( (` + f:`����() (n • ∇:))

]
+ %̃: − d

√
:3/;����(

(9)

m 1
�
dl

mC
+ mdl*

mb
+ mdl+

m[
+ mdl,

mZ
=

1
'4

[
m

mb
( (` + fl`����() (l • ∇l))

+ m

m[
( (` + fl`����() (m • ∇l)) + m

mZ
( (` + fl`����() (n • ∇l))

]
+ %l − Vdl2 + 2 (1 − �1)

dfl2
l

m:

mG 9

ml

mG 9

(10)

The production limiter is used to avoid the turbulence built-up in the stagnation regions. The production term of
turbulence kinetic energy and turbulent specific dissipation rate is given by:

%: =
1
'4

[
`C

(
mD8

mG 9

+
mD 9

mG8
− 2

3
X8 9

mD:

mG:

)
− 2

3
d:X8 9'4

]
mD8

mG 9

%̃: = min(%: , 10V∗dl:)

%l =
dW

`C
%̃:'4

(11)

The turbulent viscosity (`����() is calculated by:

`����( =
d01:

max (01l, (�2)
'4 , ( =

√
(8 9(8 9 , (8 9 =

1
2

(
mD8

mG 9

+
mD 9

mG8

)
(12)
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The blending functions �1 and �2 are given by:

�1 = tanh
(
0A64

1

)
�2 = tanh

(
0A62

2

)
0A61 = min

[
max

( √
:

V∗l3
,

500`
d32l

1
'4

)
,

4d:fl2

��:l3
2

]
0A62 = max

(
2
√
:

V∗l3
,

500`
d32l

1
'4

)
(13)

The SST model coefficients are blended by:

f: = �1f:1 + (1 − �1) f:2 , fl = �1fl1 + (1 − �1) fl2

W = �1W1 + (1 − �1) W2 , V = �1V1 + (1 − �1) V2
(14)

Closure coefficients:
V∗ = 0.09, f:1 = 0.85, f:2 = 1.0, V1 = 0.075, V2 = 0.0828

fl1 = 0.5, fl2 = 0.856, W1 =
5
9

, W2 = 0.44, 01 = 0.31
(15)

For the IDDES model, the length scale (;����() is derived by blending the RANS and LES length scale using the
function 5̃3 . Here, the fundamental empirical constant, ���( , is blended using the SST blending function �1. The
hybrid turbulence model length scale (;����() is given by:

;����( = 5̃3 (1 + 54) ;'�#( +
(
1 − 5̃3

)
;!�(

;!�( = ���(Δ

;'�#( =

√
:

V∗l

���( = �1���(1 + (1 − �1) ���(2

(16)

The standard sub-grid length scale (Δ) for the LES mode is a function of the nearest wall distance (3) and the
maximum edge length of the cell (Δ<0G). This scale is written as:

Δ = min (�F max [3,Δ<0G] ,Δ<0G) (17)
Many researchers have observed the standard LES sub-grid length scale based on Δ<0G suffers from the delayed

transition to the LES mode with the DDES based models [20, 21, 27–30]. This delayed flow transition leads to the
insufficient flow instability to unlock Kelvin-Helmholtz instabilities in the free shear layer to accelerate the flow transition
rapidly in this case. To overcome this problem, the vorticity aligned with a grid line based on Chauvet et al. [22] is used
in the current study, which is defined as:

Δ = min (�F max [3,Δl] ,Δl)
where,

Δl =

√
(l̂ • l̂)2Δ[ΔZ + (m̂ • l̂)2ΔZΔb + (n̂ • l̂)2ΔbΔ[

(18)

The blending function 5̃3 is evaluated using the following relations:

5̃3 = max ( (1 − 53C ) , 51)
53C = 1 − tanh

[
(�3C1A3C )�3C2

]
A3C =

aC

^232
√

0.5
(
(2 +Ω2) 1

'4

51 = min
(
2 exp

(
−9U2

)
, 1.0

)
U = 0.25 − 3/Δ<0G

(19)
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The elevation function 54 is computed as follow:

54 = 542 max ( ( 541 − 1.0) , 0.0)

541 =

{
2 exp

(
−11.09U2) , U ≥ 0

2 exp
(
−9.0U2) , U < 0

542 = 1 − max ( 5C , 5;)

5C = tanh
( (
�2
C A3C

) 3
)

5; = tanh
( (
�2
; A3;

) 10
)

A3; =
a

^232
√

0.5
(
(2 +Ω2) 1

'4

(20)

Additional model constants for IDDES:

�F = 0.15, �3C1 = 20, �3C2 = 3, ^ = 0.41
�C = 1.87, �; = 5.0, ���(1 = 0.78, ���(2 = 0.61

(21)

B. Fifth-Order WENO Scheme
For the inviscid flux calculation at the interface 8 + 1

2 , the conservative variables &! and &' are reconstructed using
the fifth order WENO scheme [31, 32]. For example, (&!) 8+ 1

2
is reconstructed as:

(&!) 8+ 1
2
= l0@0 + l1@1 + l2@2 (22)

where,
@0 =

1
3
&8−2 −

7
6
&8−1 +

11
6
&8

@1 = −1
6
&8−1 +

5
6
&8 +

1
3
&8+1

@2 =
1
3
&8 +

5
6
&8+1 −

1
6
&8+2

(23)

The weight of the stencil is given by

l: =
U:

U0 + ... + UA−1
, : = 0, ..., A − 1 with A = 3

U: =
�:

(n + �(: )2

�0 = 0.1, �1 = 0.6, �2 = 0.3

(24)

and the smoothness indicator is calculated by

�(0 =
13
12

(&8−2 − 2&8−1 +&8)2 + 1
4
(&8−2 − 4&8−1 + 3&8)2

�(1 =
13
12

(&8−1 − 2&8 +&8+1)2 + 1
4
(&8−1 −&8+1)2

�(2 =
13
12

(&8 − 2&8+1 +&8+2)2 + 1
4
(3&8 − 4&8+1 +&8+2)2

(25)

n is introduced in the denominator of U: calculation in Eq. (24) to avoid denominator becoming zero and therefore,
it is supposed to be a very small number. The study of Shen at al. [31] found that �(: oscillates with a small value of n
and shifts the weight away from its optimal values in the smooth region. With n significantly higher than �(: , U: is less
sensitive to the �(: and l: is closed to the �: . To maintain the sensitivity to shocks in the flow field, n should not be
greater than �(: . Based on the work of Shen at al. [31], the optimal value of n is 10−2 for subsonic and transonic flows.
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IV. Implicit Time Accurate Flow Solver
The unsteady, compressible RANS equations and the turbulence model are solved in a fully coupled manner using

an implicit unfactored Gauss-Seidel line iteration. Their time-dependent form is first control volume integrated and
their semi-discretized form is given by:

mQ
mC

= − 1
Δ+

∮
(

R� .ds + D (26)

where, R� is the net flux vector discretized in the space and D is the contribution of the source term.
Following Jameson’s dual time-stepping method [33], a pseudo temporal term mQ/mg is added to the left-hand side

of Eq. (26). The physical temporal term (mQ/mC) is discretized using the three-point backward differencing scheme at
the physical time levels = + 1, = and = − 1. The pseudo temporal term is discretized on two pseudo time steps (i.e. < + 1
and <) at the same physical time step = + 1. The final formulation of this dual time-stepping scheme is given by:[ (

1
Δg

+ 1.5
ΔC

)
� −

(
mRHS
mQ

) =+1,<
]
ΔQ=+1,<+1 = RHS=+1,< − 3Q=+1,< − 4Q= + Q=−1

2ΔC
(27)

where,
RHS = − 1

Δ+

∮
(

R�ds + D (28)

Here, the source term jacobian helps to improve the diagonal dominance of the system of equations. In each physical
time step, the solution is converged when ΔQ=+1,<+1 → 0 and therefore it has no influence on the solution accuracy.

V. Numerical Model for Structure

A. Modal Approach
The equation of motion for N-DOF (degree of freedom) system with mechanical damping and aerodynamic excitation

force can be represented in matrix form as:

[M] { ¥X} + [C] { ¤X} + [K] {X} = {F} (29)

where, M, C and K are the mass, structural damping and stiffness matrices, respectively. The aerodynamic
excitation force (F) consists of static pressure and viscous force, given by:

F = −
∮

?.=̂3� +
∮

gw.Ĉ3� (30)

where, =̂ and Ĉ are the unit normal and tangential vector to the wing surface, respectively. ? is the fluid static pressure
on the wing surface and gw is the fluid wall shear stress acting on the wing surface.

The equations of motion for the damped system, Eq. (29), are decoupled using the mass normalized mode shape (q̃)
defined as the normal modes divided by square root of the generalized mass (

√
q)<q), where < is the elastic body

mass. Let, {X} = [Φ̃]{q} and premultiplication of Eq. (29) by transpose [Φ̃]) leads to

[Φ̃]) [M] [Φ̃]{ ¥q} + [Φ̃]) [C] [Φ̃]{ ¤q} + [Φ̃]) [K] [Φ̃]{q} = [Φ̃]) {F} (31)

where, {q} is the principal coordinates vector and [Φ̃] = [q̃1, q̃2, . . . , q̃# ]) with # total number of modal
coordinates. Using the orthogonality of the system matrices and assuming damping matrix as a linear combination of
the mass and stiffness matrices, Eq. (31) is decoupled and the 9 Cℎ equation will have the form as:

¥@ 9 + 2Z 9l 9 ¤@ 9 + l2
9@ 9 =

q̃)
9

< 9

� (32)

where, l 9 and Z 9 are the natural frequency and the modal damping ratio for mode 9 . The structural damping of
0.02 is used for all modes [34]. < 9 denotes the 9 Cℎ diagonal element of modal mass matrix which will be unity. In the
current study, the structural system is reduced to first five mode shapes, since a few bending and torsional frequencies
are usually sufficient to determine the flutter. The normalized modal equation can be given by:

7

D
ow

nl
oa

de
d 

by
 G

ec
he

ng
 Z

ha
 o

n 
Fe

br
ua

ry
 1

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

03
65

 



¥@ 9 + 2Z 9
(
l 9

lU

)
¤@ 9 +

(
l 9

lU

) 2
@ 9 =

q̃)
9

<∗
9

.�∗.+2
5 .
12
B!

+
.< (33)

where, an asterisk denotes the dimensionless quantities and @ 9 represents the modal displacement of mode 9 . A
flutter speed index, + 5 =

*∞
1BlU

√
`

, is an input flutter control parameter. l 9 and Z 9 are the natural frequency and the
modal damping ratio of mode 9 , respectively. The mass ratio, ` = <

+d∞
, is the relation between the structural mass and

the mass of the equivalent volume of fluid at reference density. ! denotes the reference length, + represents the conical
frustrum volume, 1B is the streamwise root semi chord and < is the measured wing panel mass. lU is the first torsional
mode frequency in units rad/s. The nondimensional force is given by �∗ = �

d∞*2
∞!2 . For the mass normalized mode

shapes, <∗
9

should be equal to one. In the present study, the mode shapes of AGARD wing 445.6 weakened model 3
[34] are mass normalized such that <∗

9
equals to one in units lbf · in · s2 (

= 0.112979 kg · m2) .
For the time-accurate FSI solver, the Eq. (33) is transformed into the state form as follows:

[M] mS
mC

+ [K] [S] = c (34)

where,

S =

(
@ 9

¤@ 9

)
, M = [�], K =

©«
0 −1(

l 9

lU

) 2
2Z 9

(
l 9

lU

) ª®®¬ (35)

c =
©«

0

q)
9
· �∗ · + 5 ·

12
B!

+
· <

ª®®¬ (36)

B. Implicit Structural Solver
To solve the structural equations in a fully coupled manner with the CFD solver [9, 35], the decoupled structural

modal equations are integrated using the same method as the flow governing equations within each physical time step as:(
1
Δg

I + 1.5
ΔC

M + K
)
XS=+1,<+1 = c=+1,<+1 − M

3S=+1,< − 4S= + S=−1

2ΔC
− KS=+1,< (37)

In each physical time step, the flow and structural equations are solved iteratively using a pseudo time step until the
prescribed convergence criteria are achieved for both solvers. Upon converging to the prescribed level, the fluid-structure
interaction solver proceeds to the next physical time step.

VI. Flutter Control Parameters
The flutter occurs with the increasing dynamic pressure to the critical value and beyond [36]. The work of Yates

[37, 38] shows the flutter speed and frequency are primarily governed by the density (or mass ratio) and the Mach
number. The mass ratio is inversely proportional to the fluid density. The flutter speed index is directly proportional to
the free stream fluid velocity and the inverse square root of the free stream fluid density. The change in dynamic pressure
at a particular Mach number and angle-of-attack is achieved by changing the free stream fluid density and/or velocity.

Several iterations with varying dynamic pressure are needed to find the neutrally stable point at a particular Mach
number and angle-of-attack. In the present study, the flutter speed index and the mass ratio are iterated to find the flutter
boundary. In contrast, the nondimensional total pressure, total temperature and the static pressure are kept constant.
However, the absolute total pressure, total temperature and the static pressure are allowed to vary, affecting the change
in free stream fluid density and velocity at the same Mach number. This leads to the change in the Reynolds number and
the dynamic pressure.
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VII. Computational Setup

A. AGARD Wing 445.6 Geometry details
In this study, the AGARD Wing 445.6 weakened 3 is used for the flutter analysis at 0° angle-of-attack. The wing

model uses symmetry NACA 65A004 airfoil sections along the spanwise direction. The wing has a panel aspect ratio of
1.6525, a panel taper ratio of 0.6576 and 45° of quarter-chord sweptback [34]. The complete wing model details can be
found in the ref. [34]. Some of the wing structure details are mentioned in Table 1.

Table 1 AGARD Wing 445.6 weakened 3 model structural details

Measured panel mass (<) [kg] 1.8627
Panel span (�) [m] 0.762
Root chord (1B) [m] 0.559
Tip chord (1C ) [m] 0.3682

B. Computational Grid
The O-mesh topology is used as shown in Fig. 1 as it ensures a highly orthogonal grid near the wall. The far-field

boundary extends 55 times the root chord away from the wing. In the spanwise direction, the far-field is about 55
span length of the wing away from the wingtip. The first grid point away from the wall ensures H+ is below one. The
computational grid has the number of grid points of 273 around the airfoil, 84 in the wall-normal direction and 77 points
in the spanwise direction.

Fig. 1 Computational mesh of 273 x 84 x 77 for AGARD Wing 445.6 weakened 3

C. Numerical Methods
In the present study, the Roe flux difference scheme is used to evaluate the inviscid flux, where the conservative

variables at the cell interface are reconstructed with the fith-order WENO scheme. The fourth-order central differencing
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scheme is used to calculate the viscous flux. The transient flow simulation is started from the converged steady-state
results with the nondimensional characteristic time step of 0.025 and the pseudo time step based on the CFL number of
1.0. The simulation is carried out for 250 nondimensional characteristic time. In each physical time step, the !2 norm of
residuals is allowed to reduce by four orders of magnitude, which is usually achieved within 10 to 20 pseudo time steps.

D. Boundary Conditions (BCs)
For the subsonic and transonic flutter calculations, steady-state conditions are used at the inlet. The static pressure is

specified at the outlet. In the spanwise direction, the symmetry boundary condition is employed at the wing root. At the
far-field in the spanwise direction, the zero gradient boundary condition is applied. At the wall, the no-slip adiabatic
moving wall boundary condition is specified. For the supersonic flow, inflow condition with the specified inlet Mach
number is applied at the upstream portion of the outer boundary. During the numerical calculations, the Mach number
is kept constant and the Reynolds number is varied with the free stream velocity. The nondimensional turbulence kinetic
energy (:∞) and the turbulence specific dissipation rate (l∞) at the inlet are calculated based on the Eq. (38) given by:

:∞ = 9 × 10−922
∞

l∞ = 1 × 10−6 2
2
∞d∞
`∞

'4
(38)

VIII. Results

A. Mesh Independence Study
The mesh independence study is carried out for the free stream Mach number of 1.14. Three different mesh sizes

are used with the total mesh size doubled consecutively as it is very time-consuming for time-marching FSI simulation.
The coarse mesh consists a number of grid points of 137 (around airfoil) x 60 (normal to wing surface) x 67 (spanwise).
Similarly, the medium and the fine mesh consist of 137 x 84 x 87 and 273 x 84 x 77 grid points. When the mesh is
refined, the mode shapes corresponding to the surface mesh coordinates are interpolated by a radial basis function
interpolation. Fig. 2 shows the first mode displacement for different meshes at the free stream Mach number of 1.14 and
the flutter speed index (+ 5 ) of 0.3776. The predicted generalized displacements for mode-1 are well converged with
different meshes. Therefore, fine mesh is chosen for the flutter boundary prediction in this study.

0 50 100 150 200 250

−4

−2

0

2

4

·10−5

Nondimensional Time [-]

M
od

al
di

sp
.

[-]

Coarse
Medium
Fine

Fig. 2 Mesh independence for M∞ = 1.14, Vf = 0.3776

B. Flutter Boundary
Fig. 3 shows the first three mode generalized displacement at the Mach number of 0.96 with varying flutter speed

index. At the flutter boundary, as shown in Fig. 3(b), the generalized model displacement exhibits the Limit Cycle
Oscillation (LCO). The wing tip generalized displacement damps out below the flutter boundary, Fig. 3(a), and grows
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above it, Fig. 3(c). The first two mode generalized displacement contribution is higher as compared to the other
remaining modes.
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Fig. 3 Generalized displacement of wingtip TE point for M∞ = 0.96
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0 100 200
−4

−2

0

2

4
·10−5

Nondimensional Time [-]

M
od

al
di

sp
.

[-]

(c) Supersonic (M∞ = 1.14)

Fig. 4 Generalized displacement of wingtip TE point at/near flutter boundary
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(b) Transonic (M∞ = 0.96)
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Fig. 5 Generalized displacement and modal force of wingtip TE point at/near flutter boundary
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Fig. 6 Lift and drag coefficient at/near flutter boundary

The predicted modal displacements of wingtip TE point are shown in Fig. 4 at the flutter boundary for Mach number
of 0.678, 0.96 and 1.14. For the supersonic and transonic flow, the first mode generalized displacement amplitude does
not vary much except the reduction in oscillation frequency at the transonic flow. The second mode amplitude is also
comparatively smaller. At the subsonic flow, the first mode generalized displacement amplitude decreases in comparison
to the transonic and supersonic flow, whereas the second mode displacement amplitude increases. The frequency of
oscillation increases at the subsonic flow suggesting the increase in flutter speed index.

Fig. 5 shows the generalized modal displacement and modal force
q̃)
9

<∗
9
.�∗.+2

5
.
12
B!

+
.< for three different Mach

numbers ranging from subsonic to supersonic flow regime. For all Mach numbers, first two modal forces are in phase
with the second mode generalized displacement, whereas they have the reverse phase with the first modal displacement.
This phenomenon shows that this reverse phase is not responsible for the sonic dip, as observed by Gan et al. [25]. The
generalized modal force amplitude at Mach number of 0.678 and 1.14 are very similar, whereas it drops at the Mach
number of 0.96.

The predicted lift and drag coefficient for three different Mach numbers at flutter boundary is shown in Fig. 6. The
predicted lift coefficient at the transonic flow remains low. The drag coefficient increases from subsonic to supersonic
flow due to the wave drag.
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Fig. 7 Generalized displacement of wingtip TE point and wing fluttering

Fig. 7 illustrates the first mode generalized displacement of wingtip TE point and wing fluttering. Two different time
steps are marked in the generalized modal displacement plot for which the TE displacements are shown at the bottom.
The trailing edge experiences larger amplitude vibration than the leading edge due to the combined effect of generalized
bending and torsional force associated with the flutter.
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Fig. 8 Flutter boundary
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Fig. 9 Instantaneous Mach number contours for M∞ = 0.96 at 92% wing span

(a) T = 215 [-] (b) T = 235 [-] (c) T = 245 [-]

Fig. 10 Instantaneous Mach number contours for M∞ = 1.14 at 92% wing span

The predicted flutter speed index and frequency ratio are compared with the experimental measurements in Fig. 8.
Here, the frequency ratio is defined as the ratio of flutter frequency to the first torsional mode natural frequency. The
predicted flutter boundary with the hybrid turbulence model is in good agreement with the experiment. The hybrid
model predicts the flutter speed index accurately at the supersonic flow in addition to the transonic and subsonic flow.
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The flutter frequency ratio is under-predicted by approximately 10 % at the Mach number of 1.14 and 4 % at the Mach
number of 0.96, whereas it is over-predicted by 3 % at the Mach number of 0.678.

Fig. 9 shows the instantaneous Mach number contours for "∞ = 0.96 near the wingtip under stable vibration at
three different nondimensional time. The supersonic flow region appears on the suction and pressure side of the wing.
This supersonic flow region moves back and forth in the flow direction alternatively on the suction and pressure side.
This leads to the change in angle-of-attack and the trailing edge movement larger than the leading edge. At "∞ = 1.14
as shown in Fig. 10, the oblique shock wave appears near the trailing edge and its oscillation is larger above the suction
and pressure surface. The flow separation is not observed at the subsonic flow and also with the shock-wave boundary
layer interaction.

IX. Conclusions
In the present study, the flutter boundary of the AGARD Wing 445.6 is simulated at various Mach numbers using

the SST-IDDES with a fully coupled Fluid-Structure Interaction. The Roe approximate Riemann solver with the 5th
order WENO reconstructed conservative variables for inviscid flux and the fourth order central differencing scheme for
the viscous flux are used to resolve the shock-wave boundary layer interactions. A modal approach with five decoupled
modal equations are used to calculate the structural response.

At the transonic and supersonic flow, the viscous forces are predicted more accurately with the hybrid model than its
base turbulence model. Therefore, the predicted flutter speed index and frequency ratio are in close agreement with the
experimental measurements, in addition to the subsonic flow. The torsional mode displacement contribution decreases
at the transonic and supersonic flow. The shock oscillations are larger at the supersonic flow compared to the transonic
flow. No flow separation is observed at different Mach numbers.
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