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Background

e Fully coupled fluid-structure model is necessary to capture
the nonlinear flow phenomena and structure coupling for tur-
bomachinery flow induced vibration

e c.¢.: Stall flutter have unsteady flow separation, shock motion,
oscillating tip vortex, blade coupling in a bladed disk (IBR).

e Prescribed blade motion is difficult (inaccurate) if not impos-

sible

e Final goal: develop high fidelity prediction tool for mistunned
bladed disk flutter prediction



CFD Aerodynamic Model

e Reynolds-Averaged Navier-Stokes equations(RANS)
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e Molecular viscosity fi = fi(T') is determined by Sutherland law

e Speed of sound a = /YRT

e Total energy:
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e Turbulent shear stresses and heat flux are calculated
by Baldwin-Lomax model



Time Marching Scheme

Implicit unfactored line Gauss-Seidel iteration, dual time step-
ping
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Roe’s Riemann Solver on Moving Grid System
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Boundary Conditions

e Upstream boundary conditions: All the variables
are specified using freestream condition except the pressure
is extrapolated from interior

e Downstream boundary conditions: All the variables
are extrapolated from interior except the pressure is set
to be its freestream value

e Solid wall boundary conditions: Non-slip condition

Uy = 2$b — Uy, Vo = 2yb — U (21)

and adiabatic and the inviscid normal momentum equation
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Geometric Conservation Law
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Structural model for elastic cylinder:

mi+C,x+ K,x =D
my + Cyy+ Ky =L

C, = C, and K, = K, After normalization:

2 2\ 2
QZ—I—QC(—)Z.C—F(—) r = : Cd
u U UsT
2 2\ 2 2
y+26<—)y+<—) Y = C
u UsT

R Cxay 7_U#.O — — R
= p iy U e b= w = ey /M s =

Cy and (] — Lift and drag coefficient

11

TPoob?’

(27)

(28)



Matrix form:
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Structural model for elastic airfoil:

mh + S, 4+ Kph = —L
S.h+ L+ Ky =M

Normalized:
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Fully Coupled Fluid-Structural Interaction Proce-
dure

Initial flow field and structural
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Figure 1: Flow-Structure Interaction Calculation Steps
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e Mesh Deformation Strategy

1) inner zone: moving with the solid object, not deformed, keep
the orthogonality and save CPU time

2) outer zone: moved with inner zone, deformed as a spring
system, far field boundary stationary
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Vortex-Induced Oscillating Cylinder

Re=500, M=0.2

Figure 2: Sketch of the elastically mounted cylinder
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Figure 3: Mesh around the cylinder near the solid surface

16



Validation of Stationary cylinder vortex shedding
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Figure 4: Time history of the lift and drag of the stationary cylinder due to vortex
shedding

Table 1: Results of Mesh Refinement Study and comparison with the experiments

‘ Mesh Dimension H Ste, ‘ Ste, ‘ Ste, . ‘ C ‘ Cy ‘
80x40 0.3931 | 0.1978 | 0.1978 +1.0164 1.34154+0.0916
120x &80 0.4126 | 0.2075 | 0.2075 +0.9921 1.340540.0958
200x 150 0.4199 | 0.2100 | 0.2100 +0.9994 1.352540.0989
(Roshko 1954) 0.2075
(Goldstein 1938) 0.2066
384x96 (Alonso 1995) || 0.46735 | 0.23313 1.14946(Climaz) | 1.31523(Claug)
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Flow induced vibration

Figure 5: Vorticity contours with small cylinder structural oscillation amplitude,
s = 12.7324, ¢ = 0.1583,
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Figure 6: Vorticity contours with large cylinder structural oscillation amplitude, ps =
1.2732, ¢ = 0.01583

3.0
25
20

15

L L L e |

RN YRR SRR NVAIN NN R RN SR MV SRR |
0 10 20 30 40 50 60

Dimensionless Time

-1.0 b=l

Figure 7: Time histories of the lift and drag coefficients of the oscillating cylinder,
s =5, ¢ =0.0403
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Figure 8: The trajectory of the Time histories of the lift and drag coefficients of the
oscillating cylinder, pus = 1.2732, ¢ = 0.1583
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Figure 9: Comparison of the computed amplitude with Griffin’s experimental data
for the elastically mounted cylinder.
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CFD
— — — — Structure
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Figure 10: Convergence histories for both CFD and structural solvers within one
physical time step
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Steady State Flow of Transonic RAE 2822 Airfoil

Re=6.5 x 10°, M,,=0.729, AoA=2.31°.
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Figure 11: Pressure coefficient comparison

Table 2: Aerodynamic coefficients and y+ for RAE 2822 Airfoil

‘ Mesh Dimension H Cy ‘ G ‘ Cm ‘ Y+ ‘
128 x50 0.01475 | 0.73790 | 0.09912 | 0.0304 - 2.4070
25655 0.01484 | 0.74036 | 0.09914 | 0.1813 - 2.3649
512x95 0.01354 | 0.74929 | 0.09861 | 0.0559 - 1.7569

Prananta et al. | 0.01500 | 0.74800 | 0.09800
Experiment 0.01270 | 0.74300 | 0.09500
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Forced Pitching NACA 64A010 Airfoil
Re=1.256 x 107, M,,=0.8
a(t) = ay + apsin(wt) (35)

a, =0, a, =1.01°
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Figure 12: Comparison of computed lift coefficient with Davis’ experimental data for
the forced pitching airfoil.
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Figure 13: Comparison of computed moment coefficient with Davis’ experimental
data for the forced pitching airfoil.
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Flutter Prediction for NACA 64A010 Airfoil

Re = 1.256 x 107, My, = 0.75 — 0.95, a = —2.0, 2, = 1.8,
“0 = 1,72 =348, i = 60.

Figure 14: Sketch of the elastically mounted airfoil
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Figure 15: O-type mesh around the NACA 64A010 airfoil
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Figure 16: Time histories of plunging and pitching displacements for M., = 0.825
and V* = 0.55 - Damped response.
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Figure 17: Time histories of plunging and pitching displacements for M., = 0.825
and V* = 0.59 - Neutrally stable response.
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Figure 18: Time histories of plunging and pitching displacements for M., = 0.825
and V* = 0.70 - Diverging response.
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Figure 19: Comparison of computed flutter boundaries - Speed index versus Mach
number.
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Figure 20: Comparison of computed flutter boundaries - = versus Mach number.
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Figure 21: Time histories of plunging and pitching displacements for M., = 0.825
and V* = 0.9 - Limit Cycle Oscillation.
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Figure 22: Time histories of plunging and pitching displacements for M., = 0.9 and
V* = 2.5 - Second mode oscillation.
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Figure 23: Time histories of plunging and pitching displacements for M., = 0.875
and V* = 2.5 - ‘Standing’ status.
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Conclusion

e A fully coupled methodology is developed for calculating the
flow-structure interaction problems with moving and deforming
mesh systems

e The moving mesh and mesh deformation strategy is based on
two mesh zones

e For an elastically mounted cylinder, computed cross-flow dis-
placement of the cylinder agree well with experiment

e For the forced pitching NACA 64A010 airfoil, the computed
lift oscillation agrees very well with the experiment The com-
puted moment oscillation has large deviation from the experi-
ment

e For the elastically mounted airfoil, the flutter boundary and
the transonic dip agree well with the results of other researchers

e The other phenomena captured in the computations of elas-
tical airfoil include the limit cycle oscillation (LCO) and the
steady state flow conditions
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